August 2017 Istanbul Technical University - Faculty of Science and Letters Freshman and Sophomore Mathematics Courses (Mat101, 101E, 103, 103E, 104, 104E, 201, 201E, 261, 261E). The Mathematics Department of ITU provides training to students in their first and second year at the university via three different mathematics courses. The students arrive at ITU having obtained quite high entrance examination grades, so the mathematics courses start directly at the Calculus level (no precalculus courses are offered). There are two sequential calculus courses, Mat101-1021 course language Turkish (Mat101E-102E course language English) – 5 credits and Mat103-1042 course language Turkish (Mat103E-104E course language English) – 4 credits. Each year over 8,300 freshmen attend these courses. Calculus I (both Mat101 and 103) covers the calculus of single variable functions and differential and integral calculus with applications. Calculus II (both Mat102 and 104) covers infinite series, calculus of vectors, multivariable functions and multiple integrals. The two-semester Calculus sequence is mandatory throughout the university with the exception of the Faculty of Architecture, which requires only the single variable Calculus I. The Calculus sequence is in general completed in the first year and, for many departments, serves as a prerequisite for other courses. Starting Fall term 2017, there will be some changes to the Calculus sequence (see Improvements section below.) The Differential Equations course Mat201 (course language Turkish), and Mat201E (course language English), is a required course in the curriculum of all the engineering departments and is offered to sophomores both Fall and Spring terms, although most departments prefer to take this course in the Fall to meet their departmental prerequisites. Each year over 2,700 sophomores attend this course. It covers ordinary differential equations including series methods. The Linear Algebra course Mat261 (course language Turkish), and Mat261E (course language English), is a required course in the curriculum of some of the engineering departments and is offered to both freshmen and sophomores. Some of the departments offer additional MAT coded courses that are not under the Mathematics Department’s responsibility. Each year over 2,200 students attend this course. It covers matrices and systems of linear equations, vector spaces, linear transformations and matrix representations of linear transformations. With the increasing complexity of engineering problems, the use and the role of mathematics has become the primary pillar of engineering practice. The fundamental goal of the freshman and sophomore 1 2 See Appendix 1 See Appendix 1 mathematics courses is to help prepare students to enter the world of science and engineering. With the help of these mathematics courses, students in their first and second years achieve simple mastery of solution techniques, understanding of mathematical ideas and processes, and efficiency in applying their understanding to the formation and analysis of mathematical models of physical phenomena and engineering systems. Starting Fall term 2017 there will be some changes to the Differential Equations and the Linear Algebra courses (see Improvements section below.) Since 2003, the Math Department has given the above courses with parallel sections; students are free to register for any section of their required course regardless of their department and program. All students registered in the same course, regardless of course language, take the same midterm and final exam on the same day (Saturday), and are considered in the same grade distribution. Immediately following the examination, solutions are posted on the website www.ninova.itu.edu.tr and the lecturers and teaching assistants (supervised by the lecturers) begin to grade the examination papers. The grades are recorded and are posted on the department website www.mat.itu.edu.tr Each semester, a course coordinator is appointed for every course. The course coordinator is responsible for planning and coordinating the delivery of the course and for ensuring its appropriate assessment together with the Head of Department, who has the final responsibility. The coordinator is also responsible for organizing the grading of examination papers. The Department of Mathematics posts non-graded homework for each course on the website www.ninova.itu.edu.tr. The preparation of homework that serves to guide the students is the responsibility of course coordinators and is posted after each chapter. The lecturer of each course allocates a 2-hour office hour period for student queries that is indicated on a weekly course schedule hung on his or her door. Teaching assistants do the same. Each semester an exam committee is appointed to every course consisting of faculty members that are not assigned to the particular course. The committee assists with determining exam content, writing new exam questions, and editing exam questions to maintain a high standard of exam quality. Improvements Going into effect Fall term 2017, math courses will be changed in line with curricular improvements being done throughout the university: The Calculus sequence is now standardized across departments3. This will help with the counting of courses in the case of transfers between departments. The Differential Equations and Linear Algebra courses, in an approach closer to that which has been gaining popularity globally, have been combined into one course, namely Engineering 3 See Appendix 2 &3 – the new course catalogue forms. Mathematics4. Students, as a result, will be better able to observe the interaction between the two subjects. Since 2012, the Mathematics Department has strived to use the ITU Student Information System, Ninova, more effectively to maintain communication with students, share information, and to increase coordination and information sharing amongst lecturers offering the same courses. Students can use Ninova to access course material, homework, past terms’ exam questions and solutions, and exam locations, along with their exam grades. Lecturers can send group announcements and documents to students as well. The past year we have begun to develop and add to the department website as well. Currently, exam locations and grades are posted on the website. Teachers can access information about their students and statistics about their courses through the site. Additionally, teachers can see students who have appealed grades, along with their grades, and make merited changes online during the appropriate period. Students, then, are able to access the results of their grade appeals online. The process of exam grade entry was automated during spring term, 2017. Exam papers were standardized so that grade entry may be done using an optic reader. This offers the advantage of speed and lessens error. An anticipated change is the ability to digitize graded exams using an optic reader during the grade entry process. This will make archiving and responding to exam appeals easier. 4 See Appendix 4 – the new course catalogue form. Appendix 1 Mathematics Department Mat103-Mat103E-Mat101-Mat101E(Mathematics 1) Mat104-Mat102-Mat102E(Mathematics 2) Faculty IS Program 104 102 104 201 201 201 102 102 102 102 102 201 201 201 261 201 101E 102E 201 JDF Geodesy and Photogammetry Eng (GEO Geomatics Eng.) 101 102 201 CEV Environmental Eng. 103 104 201 FIZ Physics Eng. KIM Chemistry JEF Geophysical Eng. JEO Geological Eng. MD PET Petroleum and Natural Gas Eng. MAD Mining Eng. CHZ Mineral Processing Eng. INS Civil Eng. INB UCK Aeronautical Eng. UU UZB Astronautical Eng. MTO Meteorological Eng. MK MAK Mechanical Eng. IML Manufacturing Eng. BB KM 102/104 261 102/104 261 102 261 103 103 104 104 261 201 201 KON Control Eng. BLG Computer Eng. 101E 281E* 102 201 KMM Chemical Eng. 103 103 103 104 104 104 201E 201 201E 104 104 201E 201E 104 261 ELK Electrical Eng. MET Meallurgical and Materials Eng. GEM Naval Architecure and Marine Eng. DEN Ship Building and Ocean Eng. EUT Industrial Product Design ICM Interior Architecture PEM Landscape Architecture TEK Textile Eng. 103 103 261 261 4th Semester 261 261 201 201 201 201 201 201 201 201 SBP Urban and Regional Planning TT 101/103 101/103 101 102E 102E 102E 102E MIM Architecture MM 261 281* 281* 281* 281* TEL Telecommunication Eng. GID Food Eng. GD 101 101 101 101 101 261 101E 101E 101E 101E ELE Electronics Eng. EE 103 101 103 261 3rd Semester 201E 201E ISL Managment Science and Eng. 103 103 2nd Semester 104 104 END Industrial Eng. BIO Molecular Biology and Genetics FE 1th Semester Mat 201-Mat201E (Differential Equations) Mat261 (Linear Algebra) 261 103E 103E 103E 103E 103E 103 201 Mat281-Mat281E-(Linear Algebra and Applications)course given by the Faculty of Electrical and Electronic Eng Appendix 2 İTÜ DERS KATALOG FORMU (COURSE CATALOGUE FORM) Dersin Adı Course Name Matematik I Mathematics I Kodu (Code) Yarıyılı (Semester) Kredisi (Local Credits) Mat 103-103E 1 4 AKTS Kredisi (ECTS Credits) 6* Bölüm / Program (Department/Program) Matematik/Tüm Programlar Dersin Türü (Course Type) Zorunlu (Compulsory) Dersin Önkoşulları (Course Prerequisites) Dersin mesleki bileşene katkısı, % (Course Category by Content, %) Dersin İçeriği (Course Description) Dersin Amacı (Course Objectives) Dersin Öğrenme Çıktıları (Course Learning Outcomes) Ders Uygulaması, Saat/Hafta (Course Implementation, Hours/Week) Ders (Theoretical) Uygulama Laboratuar (Tutorial) (Laboratory) 3 2 - ( Mathematics/All Programs) İngilizce (English) Dersin Dili (Course Language) Yok(None) Temel Bilim (Basic Sciences) 100% Temel Mühendislik (Engineering Science) Mühendislik Tasarım (Engineering Design) İnsan ve Toplum Bilim (General Education) - - Tek Değişkenli Fonksiyonlar, Limit ve Süreklilik, Türev, Türevin Uygulamaları, Eğri Çizimi, Asimptotlar lar, Integral, İntegral Hesabının Temel Teoremi, İntegralin Uygulamaları, Transandan Fonksiyonlar, İntegral Teknikleri, Belirsizlik Şekilleri, L’Hopital Kuralı, Genelleştirilmiş İntegraller. Functions of a Single Variable, Limits and Continuity, Derivatives, Applications of Derivatives, Sketching Graphs of Functions, Asymptotes, Integration, Fundamental Theorem of Calculus, Applications of Integrals, Transcendental Functions, Techniques of Integration, Indeterminate Forms, L’Hopital’s Rule, Improper Integrals. 1. Tek değişkenli fonksiyonlarda limit, süreklilik, türev kavramlarını öğretmek. 2. Türev ve integral kavramlarını uygulamada kullanma becerisi sağlamak. 3. Matematik bilgisini mühendislik problemlerini çözmede kullanabilme becerisi kazandırmak 1. To provide the concepts of functions, limits, continuity, differentiation and integration. 2. To provide the applications of differentiation and integration 3. To give an ability to apply knowledge of mathematics on engineering problems Bu dersi tamamlayan öğrenci, I. Tek değişkenli fonksiyonlarda Limit ve süreklilik kavramlarını kullanabilme, II. Fonksiyonların grafiğinin, asimptot, kritik nokta, azalan/artan ve konkavlığının incelenerek çizilmesi, III. Maksimum minimum problemlerinin kurulması ve çözülmesi, IV. Integral Hesabın Esabı Esas Teoremini kullanarak belirli integral hesabı ve alan hacim , uzunluk hesabını belirli integral yardımıyla çözebilme, V. Transandan Fonksiyonlarla işlem yapma ve integral alma tekniklerini uygulama, VI. Belirsizlik şekilleri ve L’Hopital kuralı yardımıyla limit bulabilme, VII. Genelleştirimiş integrallerin yakınsaklığı ve ıraksaklığı belirleme, becerilerini kazanır. Students completing this course will be able to : I. Compute the limit of various functions, use the concepts of the continuity, use the rules of differentiation to differentiate functions. II. Sketch the graph of a function using asymptotes, critical points and the derivative test for increasing/decreasing and concavity properties. III. Set up max/min problems and use differentiation to solve them. IV. Evaluate integrals by using the Fundamental Theorem of Calculus and apply integration to compute areas and volumes by slicing, volumes of revolution, arclength. V. Work with transcendental functions and evaluate integrals using techniques of integration. VI. Use L'Hospital's rule. VII. Determine convergence/divergence of improper integrals. Appendix 2 Ders Kitabı (Textbook) Diğer Kaynaklar Thomas’ Calculus, 10th Edition, G.B Thomas, R. L. Finney, M.D.Weir, F.R.Giordano, AddisonWesley, 2005. (Other References) Ödevler ve Projeler Öğrencilere dersi daha iyi anlamaları amacı ile ödev verilecek ve bu ödevler 1 hafta içinde toplanacaktır. (Homework & Projects All homeworks are to be HANDED IN a week after they are assigned. Homeworks may be used as a source for exams. Laboratuar Uygulamaları (Laboratory Work) Bilgisayar Kullanımı (Computer Use) Diğer Uygulamalar (Other Activities) Başarı Değerlendirme Sistemi (Assessment Criteria) Faaliyetler (Activities) Yıl İçi Sınavları (Midterm Exams) Kısa Sınavlar (Quizzes) Ödevler (Homeworks) Projeler (Projects) Dönem Ödevi (Term Paper) Laboratuar Uygulaması (Laboratory Work) Diğer Uygulamalar (Other Activities) Final Sınavı (Final Exam) Adedi (Quantity) 1 Değerlendirmede Katkısı, % (Effects on Grading, %) 40% 4 ------- 1 60% (*)Zorunlu durumlarda programlar AKTS(ECTS) değerini ± 0,5 aralığında kalmak koşulu ile farklı uygulayabilir. Appendix 2 DERS PLANI Hafta 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Konular Limit ve Süreklilik Limit ve Süreklilik Türev Türev Türevin Uygulamaları Türevin Uygulamaları Integral Integral/ARA SINAV Integralin Uygulamaları Integralin Uygulamaları/Transandan Fonksiyonlar Transandan Fonksiyonlar Integral Teknikleri Integral Teknikleri/L’Hopital Kuralı Genelleştirilmiş İntegraller Ders Çıktısı I I I I II II-III IV IV IV IV-V V V V-VI VII COURSE PLAN Weeks 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Topics Limits and Continuity Limits and Continuity Derivatives Derivatives Applications of Derivatives Applications of Derivatives Integration Integration/MIDTERM EXAM Applications of Integrals Applications of Integrals/Transcendental Functions Transcendental Functions Techniques of Integration Techniques of Integration Improper integrals Course Outcomes I I I I II II-III IV IV IV IV-V V V V-VI VII Appendix 2 Dersin Mühendislik Programıyla İlişkisi Programın mezuna kazandıracağı bilgi ve beceriler (programa ait çıktılar) a b c d e f g h i j k Katkı Seviyesi 1 2 3 Matematik, fen bilimleri ve mühendislik bilgisini mühendislik problemlerini çözmede kullanabilme becerisi Deney tasarlayıp yürütebilme, sonuçlarını analiz edip yorumlama ve modern araç, gereç ve teçhizatı kullanabilme becerisi Bir makinayı, parçasını veya prosesi, beklenen performansı, imalat özelliklerini ve ekonomikliği sağlayacak şekilde seçme, geliştirme ve tasarlama becerisi Çok disiplinli takımlarda çalışabilme ve/veya liderlik yapma becerisi Mühendislik problemlerini tanımlama, formüle etme ve çözme becerisi Mesleki ve etik sorumluluk anlayışına sahip olma Türkçe ve İngilizce etkin yazılı ve sözlü iletişim kurma becerisi Mühendisliğinin ulusal ve küresel boyutlardaki etkileri hakkında bilgi sahibi olma ve yorum yapabilme becerisi Hayat boyu (Sürekli) eğitimin önemini kavrama ve uygulayabilme becerisi Mühendisliğinin güncel ve çağdaş konularına ilişkin bilgi sahibi olma Mühendislik tasarım ve analizlerinde bilgisayar yazılımları gibi modern mühendislik yöntemlerini ve çağdaş bilgi erişim olanaklarını kullanabilme becerisi X X X X X X 1: Az Katkı, 2. Kısmi Katkı, 3. Tam Katkı Relationship between the Course and the Engineering Curriculum Level of Contribution 1 2 3 Program Outcomes a b c d e f g h i j k An ability to apply knowledge of mathematics, science, and engineering on engineering problems An ability to design and conduct experiments, as well as to analyze and interpret data and use modern tools and equipment. An ability to select, develop and/or design a system, component, or process to meet desired performance, manufacturing capabilities and economic requirements. An ability to function on and/or develop leadership in multi-disciplinary teams. An ability to identify, formulate, and solve engineering problems. An understanding of professional and ethical responsibility An ability for effective written and oral communication in Turkish and English. An ability to understand and comment on the impact of engineering solutions in a national and global context. A recognition of the need for, and an ability to engage in life-long learning A knowledge of contemporary issues in engineering An ability to use the techniques, skills, and modern engineering tools , such as computer programs, necessary for engineering design and analysis and use modern information systems 1: Little Contribution, 2. Partial Contribution, 3. Full Contribution Düzenleyen (Prepared by) Tarih (Date) Department of Mathematics 2017 İmza (Signature) X X X X X X Appendix 3 İTÜ DERS KATALOG FORMU (COURSE CATALOGUE FORM) Dersin Adı Course Name Matematik II Mathematics II Kodu (Code) Yarıyılı (Semester) Kredisi (Local Credits) Mat 104-104E 2 4 AKTS Kredisi (ECTS Credits) 6,5* Ders Uygulaması, Saat/Hafta (Course Implementation, Hours/Week) Ders (Theoretical) Uygulama Laboratuar (Tutorial) (Laboratory) 3 2 - Bölüm / Program (Department/Program) Matematik/Tüm Programlar Dersin Türü (Course Type) Zorunlu (Compulsory) Dersin Önkoşulları (Course Prerequisites) MAT103 MIN DD / MAT103E MIN DD/MAT101E MIN DD/MAT 101 MIN DD/ MAT110E MIN DD/MAT 110 MIN DD Dersin mesleki bileşene katkısı, % (Course Category by Content, %) Dersin İçeriği (Course Description) Dersin Amacı (Course Objectives) Dersin Öğrenme Çıktıları (Course Learning Outcomes) Temel Bilim (Basic Sciences) 100% ( Mathematics/All Programs) İngilizce (English) Dersin Dili (Course Language) Temel Mühendislik (Engineering Science) Mühendislik Tasarım (Engineering Design) İnsan ve Toplum Bilim (General Education) - - Sonsuz diziler ve Seriler, Kutupsal Koordinatlar, Uzayda vektörler, Vektör-Değerli Fonksiyonlar, Çok değişkenli fonksiyonlar ve kısmi türevler, Çok Katlı İntegraller, Infinite sequences and series, Polar Coordinates, Vectors in Space, Vector-Valued Functions, Multivarible Functions and Partial Derivatives, Multiple Integrals, 1. Dizilerde, serilerde yakınsaklık kavramlarını ve bunların uygulamalarını öğretmek. 2. Çok değişkenli fonksiyonlarda kısmi türev ve integral kavramlarını kullanma becerisi sağlamak. 3. Matematik bilgisini mühendislik problemlerini çözmede kullanabilme becerisi kazandırmak 1. To provide the concepts and applications of the convergence of sequences and infinite series. 2. To provide the applications of partial differentiation and multiple integrals. 3. To give an ability to apply knowledge of mathematics on engineering problems Bu dersi tamamlayan öğrenci, I. Dizilerin ve serilerin yakınsaklığını; kuvvet serilerinin yakınsaklık yarıçapını bulabilme, II. Bir fonksiyonu Taylor Serisine açabilme ve yapılan hata payını bulabilme, III. Üç boyutlu uzayda vektörlerin, vektörel ve skaler çarpımını hesaplayabilme; doğru, düzlem ve kuadrik yüzey denklemlerini yazabilme, IV. Vektör değerli fonksiyonlar için limit, süreklilik, ve integral kavramlarını kullanabilme, V. Çok değişkenli fonksiyonlarda limit, süreklilik kavramlarını kullanabilme; kısmi türev hesaplayabilme; teğet düzlem, doğrultuya göre türev ve gradiyent bulabilme; ekstremum problemlerini ikinci türev testi ve Lagrange çarpan metodu ile çözebilme, VI. Çok katlı integralleri çözebilme; alan ve hacim hesabında çok katlı integralleri kullanabilme, Students completing this course will be able to: I. Compute limits of sequences and series; determine the convergence of the series and the radius of convergence of power series. II. Represent a known function as a Taylor series; approximate a known function with a Taylor polynomial and determine the error involved. III. Compute the standard representation of a vector in 3-space, compute the dot product and cross product of vectors; write equations of lines, planes and quadric surfaces in 3-space. IV. Use the concepts of continuity, differentiation, and integration of vector-valued functions. V. Understand the multivariable functions, analyze limits, determine continuity, and compute partial derivatives of them; find tangent planes, directional derivatives, gradients; apply the second partials test, and Lagrange multipliers to approximate and solve optimization problems. VI. Compute multiple integrals over rectangular regions, non-rectangular regions, and in other coordinate systems; apply multiple integrals in problem situations involving area, volume, surface area etc. Appendix 3 Ders Kitabı (Textbook) Diğer Kaynaklar Thomas’ Calculus, 10th Edition, G.B Thomas, R. L. Finney, M.D. Weir, F.R.Giordano, AddisonWesley, 2005. (Other References) Ödevler ve Projeler Öğrencilere dersi daha iyi anlamaları amacı ile ödev verilecek ve bu ödevler 1 hafta içinde toplanacaktır. (Homework & Projects All homeworks are to be HANDED IN a week after they are assigned. Homeworks may be used as a source for exams. Laboratuar Uygulamaları (Laboratory Work) Bilgisayar Kullanımı (Computer Use) Diğer Uygulamalar (Other Activities) Başarı Değerlendirme Sistemi (Assessment Criteria) Faaliyetler (Activities) Yıl İçi Sınavları (Midterm Exams) Kısa Sınavlar (Quizzes) Ödevler (Homeworks) Projeler (Projects) Dönem Ödevi (Term Paper) Laboratuar Uygulaması (Laboratory Work) Diğer Uygulamalar (Other Activities) Final Sınavı (Final Exam) Adedi (Quantity) 1 Değerlendirmede Katkısı, % (Effects on Grading, %) 40% 4 ------- 1 60% (*)Zorunlu durumlarda programlar AKTS(ECTS) değerini ± 0,5 aralığında kalmak koşulu ile farklı uygulayabilir. Appendix 3 DERS PLANI Hafta 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Konular Kutupsal Koordinatlar Kutupsal Koordinatlar/ Uzayda Vektörler Uzayda Vektörler Vektör Değerli Fonksiyonlar Çok Değişkenli Fonksiyonlar ve kısmi türevler Çok Değişkenli Fonksiyonlar ve kısmi türevler Çok Değişkenli Fonksiyonlar ve kısmi türevler Çok Katlı Integraller /Arasınav Çok Katlı İntegraller Çok Katlı İntegraller Sayı Dizileri Seriler Seriler Seriler Ders Çıktısı VI VI-III III IV V V V V VI VI I I I I-II COURSE PLAN Weeks 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Topics Polar Coordinates Polar Coordinates/Vectors in space Vectors in space Vector valued functions Multivariable Functions and Partial Derivatives Multivariable Functions and Partial Derivatives Multivariable Functions and Partial Derivatives Multiple Integrals//Midterm Multiple Integrals Multiple Integrals Sequences of numbers Infinite Series Infinite Series Infinite Series Course Outcomes VI VI-III III IV V V V V VI VI I I I I-II Appendix 3 Dersin Mühendislik Programıyla İlişkisi Programın mezuna kazandıracağı bilgi ve beceriler (programa ait çıktılar) a b c d e f g h i j k Katkı Seviyesi 1 2 3 Matematik, fen bilimleri ve mühendislik bilgisini mühendislik problemlerini çözmede kullanabilme becerisi Deney tasarlayıp yürütebilme, sonuçlarını analiz edip yorumlama ve modern araç, gereç ve teçhizatı kullanabilme becerisi Bir makinayı, parçasını veya prosesi, beklenen performansı, imalat özelliklerini ve ekonomikliği sağlayacak şekilde seçme, geliştirme ve tasarlama becerisi Çok disiplinli takımlarda çalışabilme ve/veya liderlik yapma becerisi Mühendislik problemlerini tanımlama, formüle etme ve çözme becerisi Mesleki ve etik sorumluluk anlayışına sahip olma Türkçe ve İngilizce etkin yazılı ve sözlü iletişim kurma becerisi Mühendisliğinin ulusal ve küresel boyutlardaki etkileri hakkında bilgi sahibi olma ve yorum yapabilme becerisi Hayat boyu (Sürekli) eğitimin önemini kavrama ve uygulayabilme becerisi Mühendisliğinin güncel ve çağdaş konularına ilişkin bilgi sahibi olma Mühendislik tasarım ve analizlerinde bilgisayar yazılımları gibi modern mühendislik yöntemlerini ve çağdaş bilgi erişim olanaklarını kullanabilme becerisi X X X X X X 1: Az Katkı, 2. Kısmi Katkı, 3. Tam Katkı Relationship between the Course and the Engineering Curriculum Level of Contribution 1 2 3 Program Outcomes a b c d e f g h i j k An ability to apply knowledge of mathematics, science, and engineering on engineering problems An ability to design and conduct experiments, as well as to analyze and interpret data and use modern tools and equipment. An ability to select, develop and/or design a system, component, or process to meet desired performance, manufacturing capabilities and economic requirements. An ability to function on and/or develop leadership in multi-disciplinary teams. An ability to identify, formulate, and solve engineering problems. An understanding of professional and ethical responsibility An ability for effective written and oral communication in Turkish and English. An ability to understand and comment on the impact of engineering solutions in a national and global context. A recognition of the need for, and an ability to engage in life-long learning A knowledge of contemporary issues in engineering An ability to use the techniques, skills, and modern engineering tools , such as computer programs, necessary for engineering design and analysis and use modern information systems 1: Little Contribution, 2. Partial Contribution, 3. Full Contribution Düzenleyen (Prepared by) Tarih (Date) Department of Mathematics 2017 İmza (Signature) X X X X X X Appendix 4 DERS KATALOG FORMU ( COURSE CATALOGUE FORM) Dersin Adı Mühendislik Matematiği Course Name Engineering Mathematics Kodu (Code) Yarıyılı (Semester) Kredisi (Local Credits) Mat 210-210E 3-4 4 Bölüm / Program (Department/Program) Dersin Türü (Course Type) Dersin Önkoşulları (Course Prerequisites) Dersin mesleki bileşene katkısı, % (Course Category by Content, %) Dersin İçeriği (Course Description) Dersin Amacı (Course Objectives) Dersin Öğrenme Çıktıları (Course Learning Outcomes) AKTS Kredisi (ECTS Credits) 6* Matematik/Tüm Programlar Zorunlu (Compulsory) Ders Uygulaması, Saat/Hafta (Course Implementation, Hours/Week) Ders (Theoretical) Uygulama Laboratuar (Tutorial) (Laboratory) 4 - ( Mathematics/All Programs) Ingilizce(English) Dersin Dili (Course Language) MAT 102 MIN DD/ MAT 102E MIN DD/ MAT 104 MIN DD/ MAT 104E MIN DD/MAT120E MIN DD/MAT 120 MIN DD Temel Bilim (Basic Sciences) 40% Temel Mühendislik (Engineering Science) Mühendislik Tasarım (Engineering Design) İnsan ve Toplum Bilim (General Education) 60% - - Matrisler ve Lineer Denklem Sistemleri, Vektör uzayları, Özdeğerler ve Özvektörler,Birinci Mertebeden Diferansiyel Denklemler, Yüksek Mertebeden Lineer Diferansiyel Denklemler, Laplace Dönüşümleri, Birinci Mertebeden Lineer Diferensiyel Denklem Sistemleri Matrices and System of Equations, Systems of Linear Equations, Vector Spaces, Eigenvalues and Eigenvectors, First Order Differential Equations, , Higher Order Linear Equations,The Laplace Transform, Systems of First Order Linear Differential Equations 1. Lineer denklem sistemlerinin çözüm yöntemlerini, matris ve determinant kavramlarını öğreterek mühendislik problemlerine uygulama becerisi sağlamak. 2. Diferansiyel denklemleri anlamak, kurmak, çözmek ve yorumlamak için gerekli olan temel kavramları tanıtmak ve çeşitli tipte diferansiyel denklem çözme teknikleri öğreterek mühendislik problemlerinin çözümünde kullanma becerisi sağlamak 3. Matematik bilgisini temel bilim ve mühendislik problemlerini çözmede kullanabilme becerisi kazandırmak 1. To teach the methods of solution of systems of linear equations an applications of matrix and determinant to provide skills in application to engineering problems. 2. To introduce the basic concepts necessary to understand, construct, solve and interpret differential equations, to teach methods to solve differential equations of various types to provide skills in application to engineering problems. 3. To give an the ability to use mathematics knowledge to solve basic science and engineering problems Bu dersi tamamlayan öğrenci, I. Lineer denklem sistemlerinin çözümünü bulabilir, Matrislerle aritmatik işlemler yapabilir, Matrisin tersini bulabilir.; determinantı hesaplayabilir ve Cramer kuralını kullanarak lineer sistemleri çözebilir II. Vektör uzayları , baz ve boyut kavramlarını öğrenir. Lineer dönüşümün matris ile temsil edilebileceğini görür. ve matrislerin özdeğerlerini ve özvektörlerini bulabilir III. Diferansiyel denklemleri belli özelliklerine göre sınıflandırabilir IV. Birinci mertebeden lineer ve belirli tipte lineer olmayan diferansiyel denklemleri çözer, çözümleri yorumlar ve lineer denklem çözümleri için varlık ve teklik koşullarını anlar V. Yüksek mertebeden sabit katsayılı lineer denklemler için çözüm bulur , lineer bağımsız çözümlerden tüm çözümleri türetebilir ,Laplace dönüşümü kullanarak başlangıç değer problemleri çözebilir ve Lineer Diferensiyel denklem sistemlerini lineer cebir metodlarıyla çözebilir Students completing this course will be able to: I. Solve the systems of linear equations., provide arithmetic operations with matrices, compute the inverse of matrix, determine the value of determinant of a matrix and use Cramer rule to solve the systems II. Learn the importance of the concepts of vector space, basis and dimension, compute the matrix representation of a linear transformation, and evaluate the eigenvalues and the corresponding eigenvectors of the matrix. III. Classify differential equations according to certain features IV. Solve first order linear equations and nonlinear equations of certain types , interpret the solutions and understand the conditions for the existence and uniqueness of solutions for linear differential equations V. Solve higher order linear differential equations with constant coefficients and construct all solutions from the linearly independent solutions; solve initial value problems using the Laplace transform and solve systems of linear differential equations with methods from linear algebra. Appendix 4 Ders Kitabı (Textbook) Diğer Kaynaklar Differential Equations &Linear Algebra Third Edition Edition, C.Henry Edwards ; David E. Penney Pearson İnternational Education International,2011. (Other References) Ödevler ve Projeler Öğrencilerin çalışmalarına rehberlik etmesi amacıyla 5 çalışma kağıdı dağıtılacaktır. (Homework & Projects There will be 5 worksheets in order to guide the students with their studies. Laboratuar Uygulamaları (Laboratory Work) Bilgisayar Kullanımı (Computer Use) Diğer Uygulamalar (Other Activities) Başarı Değerlendirme Sistemi (Assessment Criteria) Faaliyetler (Activities) Yıl İçi Sınavları (Midterm Exams) Kısa Sınavlar (Quizzes) Ödevler (Homeworks) Projeler (Projects) Dönem Ödevi (Term Paper) Laboratuar Uygulaması (Laboratory Work) Diğer Uygulamalar (Other Activities) Final Sınavı (Final Exam) Adedi (Quantity) 1 Değerlendirmede Katkısı, % (Effects on Grading, %) 40% 1 60% (*)Zorunlu durumlarda programlar AKTS(ECTS) değerini ± 0,5 aralığında kalmak koşulu ile farklı uygulayabilir. Appendix 4 DERS PLANI Hafta 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Konular Birinci Mertebeden Diferansiyel Denklemler Birinci Mertebeden Diferansiyel Denklemler Lineer Denklemler ve Matrisler Lineer Denklemler ve Matrisler Vektör Uzayları Vektör Uzayları Yüksek Mertebeden Diferansiyel Denklemler Yüksek Mertebeden Diferansiyel Denklemler ARA SINAV Özdeğerler ve Özvektörler Özdeğerler ve Özvektörler Lineer Diferensiyel Denklem Sistemleri Lineer Diferensiyel Denklem Sistemleri Laplace Dönüşümü Laplace Dönüşümü Ders Çıktısı III-IV IV I I II II V V II II IV-V IV-V V V COURSE PLAN Weeks 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Topics First Order Differential Equations First Order Differential Equations Matrices and Systems of Equations Matrices and Systems of Equations Vector Space Vector Spaces Higher Order Differential Equations Higher Order Differential Equations Eigenvalues, Eigenvectors Eigenvalues, Eigenvectors Linear Systems of Differential Equations Linear Systems of Differential Equations The Laplace Transform The Laplace Transfor Course Outcomes III-IV IV I I II II V V II II IV-V IV-V V V Appendix 4 Dersin Mühendislik Programıyla İlişkisi Programın mezuna kazandıracağı bilgi ve beceriler (programa ait çıktılar) a b c d e f g h i j k Katkı Seviyesi 1 2 3 Matematik, fen bilimleri ve mühendislik bilgisini mühendislik problemlerini çözmede kullanabilme becerisi Deney tasarlayıp yürütebilme, sonuçlarını analiz edip yorumlama ve modern araç, gereç ve teçhizatı kullanabilme becerisi Bir makinayı, parçasını veya prosesi, beklenen performansı, imalat özelliklerini ve ekonomikliği sağlayacak şekilde seçme, geliştirme ve tasarlama becerisi Çok disiplinli takımlarda çalışabilme ve/veya liderlik yapma becerisi Mühendislik problemlerini tanımlama, formüle etme ve çözme becerisi Mesleki ve etik sorumluluk anlayışına sahip olma Türkçe ve İngilizce etkin yazılı ve sözlü iletişim kurma becerisi Mühendisliğinin ulusal ve küresel boyutlardaki etkileri hakkında bilgi sahibi olma ve yorum yapabilme becerisi Hayat boyu (Sürekli) eğitimin önemini kavrama ve uygulayabilme becerisi Mühendisliğinin güncel ve çağdaş konularına ilişkin bilgi sahibi olma Mühendislik tasarım ve analizlerinde bilgisayar yazılımları gibi modern mühendislik yöntemlerini ve çağdaş bilgi erişim olanaklarını kullanabilme becerisi X X X X X X 1: Az Katkı, 2. Kısmi Katkı, 3. Tam Katkı Relationship between the Course and the Engineering Curriculum Level of Contribution 1 2 3 Program Outcomes a b c d e f g h i j k An ability to apply knowledge of mathematics, science, and engineering on engineering problems An ability to design and conduct experiments, as well as to analyze and interpret data and use modern tools and equipment. An ability to select, develop and/or design a system, component, or process to meet desired performance, manufacturing capabilities and economic requirements. An ability to function on and/or develop leadership in multi-disciplinary teams. An ability to identify, formulate, and solve engineering problems. An understanding of professional and ethical responsibility An ability for effective written and oral communication in Turkish and English. An ability to understand and comment on the impact of engineering solutions in a national and global context. A recognition of the need for, and an ability to engage in life-long learning A knowledge of contemporary issues in engineering An ability to use the techniques, skills, and modern engineering tools , such as computer programs, necessary for engineering design and analysis and use modern information systems 1: Little Contribution, 2. Partial Contribution, 3. Full Contribution Düzenleyen (Prepared by) Department of Mathematics Tarih (Date) 2017 İmza (Signature) X X X X X X