14.12 Oyun Teorisi Muhamet Yıldız Güz 2005 Sınav 1 Çözümleri 1. 1. sorunun çözümü (a) 1. oyuncu her iki oyunda da aynı kazanç fonksiyonuna sahip, dolayısıyla 1. oyuncu açıkça aynı tercihlere sahip. Ya 2. oyuncu? Başka deyişle, 2. oyuncunun sağdaki oyundaki kazançları soldaki oyundaki kazançlarının, negatif olmayan afin bir transformasyonu mudur? Yine başka bir deyişle, öyle a ≥ 0 ve b varmıdır ki, 0a + b = 0, 1a+b = 1, 4a+b = 3 ve 2a+b = 2 olsun? Ilk ikisini sağlamak için, a = 1 ve b = 0 olmalı, ancak bunlar 3. eşitliği sağlamazlar. Demekki, böyle bir transformasyon yoktur ve 2. oyuncu aynı tercihlere sahip değildir. (b) 1. oyuncunun sağdaki oyundaki kazançları soldaki oyundaki kazançlarının, negatif olmayan afin bir transformasyonu mudur? Başka bir deyişle, öyle a ≥ 0 ve b varmıdır ki, 0a + b = 1, 6a + b = 4, 2a + b = 2 ve 4a + b = 3 olsun? Evet, bu eşitlikleri çözerek görebilirsiniz ki, a = 1/2 ve b = 1 öyle sayılardır. 2. oyuncunun sağdaki oyundaki kazançları soldaki oyundaki kazançlarının, negatif olmayan afin bir transformasyonu mudur? Başka bir deyişle, öyle a ≥ 0 ve b varmıdır ki, 1a + b = 0, 4a + b = 1, 7a + b = 2 ve −2a + b = −1 olsun? Evet, bu eşitlikleri çözerek görebilirsiniz ki, a = 1/3 ve b = −1/3 öyle sayılardır. Evet her iki oyuncu da aynı tercihlere sahip. 2. 2. sorunun çözümü 1 transformation of the payoffs in the game on the left? In other words, do there exist a ! 0 and b with 1a+b = 0, 4a+b = 1, 4a+b = 1, 7a+b = 2, −2a+b = −1, and 1a + b = 0? Yes, you can solve the equations and see that a = 1/3 and b = −1/3 are such an a and b. So yes, both players have the same preference relation on lotteries with 2. oyuncu için, L’yi kesin domine eder. Rasyonel bir oyuncu olarak, 2. strategy profiles as M their outcomes. oyuncu asla L oynamaz. 2’nin rasyonel olduğunu bilen 1. oyuncu asla B oyAnswer to Problem 2 namaz, çünkü indirgenmiş oyunda A B’yi kesin domine eder. Elimizde alttaki For player 2 playing M strictly dominates playing L. As a rational player, oyun player 2kalır: will never play L. Knowing that player 2 is rational, player 1 will never play B since A strictly dominates B in the remaining game. Then we are left with the following game: M R A 4,1 1,0 C 2,0 2,2 In this reduced game, the pure Nash equilibria are obvious: (A, M ) and (C, R) . Indirgenmiş oyunda, saf Nash dengeleri açıktır: (A,M) ve (C,R). Şimdi de karma stratejilere bakalım.1 1. oyuncu için P (A) = p ve P (C) = 1−p, 2. oyuncu içinse P (M ) = q ve P (R) = 1 − q olsun. O zaman bu olasılıkların Now, let’s look at the mixed equlibrium. Let P (A) = p and P (C) = 1 − p sağlaması gerekenler for player 1 and P (M ) = q and P (R) = 1 − q for player 2. Then the conditions that these probabilities have to satisfy are ∗ qthe + 1mixed ∗ (1 − equlibrium. q) = 2 Let P (A) = p and P (C) = 1 − p Now, let’s look4 at ∗ p) + (1 −Pp) + 2player ∗ (1 −2.p)Then the conditions for player 1 and P 1(M =0q∗and (R)== 10−∗qpfor that these probabilities have to satisfy are As a result we get 4 ∗ q + 1 ∗ (1 − q) = 2 q = 1/3 1 ∗olarak p + 0 ∗ (1 − p) = 0 ∗ p + 2 ∗ (1 − p) şeklindedir. Sonuç p = 2/3 As a result we get Then the mixed strategy Nash equlibrium is ! " q = 1/3 2 2 1 1 A + p C,= M + R 3 3 3 2/3 3 thestrategy mixed strategy and Then the pure NE are Nash equlibrium is ! " 2 M )1 and1(C, R)2. (A, A + C, M + R 3 3strateji 3 Nash 3 dengesi elde ederiz. Bu durumda, karma and the puretostrategy NE 3are Answer Problem M ) and (C,below. R) . We first eliminate action y (a) The backwards induction(A, outcome is as for player 2, by assuming that player 2 is sequentially rational and hence will not to play y, which 3is conditionally dominated by x. We also eliminate Answer Problem action r for player 1, assuming that player 1 is sequentially rational. This is r is conditionally Second, that player (a) because The backwards inductiondominated outcome isby as l.below. Weassuming first eliminate action2y isfor sequentially rational and that player 2 knows that player 1 is sequentially player 2, by assuming that player 2 is sequentially rational and hence rational, c. This is dominated because, knowing that player 1 is will not we playeliminate y, which bisand conditionally by x. We also eliminate sequentially rational, player 2 would know that 1 will not play r, and hence action r for player 1, assuming that player 1 is sequentially rational. This is bbecause would lead to payoff of 0,dominated and that playing c would leadthat to aplayer payoff2 2 by r is conditionally by l. Second, assuming ofis 1. Being sequentially rational she must play a. Finally, assuming that sequentially rational and that player 2 knows that player 1 is sequentially (i) player 1 is sequentially rational, (ii) player 1 knows that player rational, we eliminate b and c. This is because, knowing that player21isis sequentially (iii) playerknow 1 knows 2 knows that sequentiallyrational, rational, and player 2 would that that 1 willplayer not play r, and hence player 1 is sequentially rational, we eliminate L. This is because (ii) and b would lead to payoff of 0, and that by playing c would lead to a payoff (iii) lead player 1 to conclude that 2 will play a and x, and thus by (i) he of 1. Being sequentially rational she must play a. Finally, assuming that plays R. (i) player 1 is sequentially rational, (ii) player 1 knows that player 2 is sequentially rational, and (iii) player 1 knows that player 2 knows that 1 ∗ p + 0 ∗ (1 − p) q As a result we get p = = 1/3 2/3 = 0 ∗ p + 2 ∗ (1 − p) Then the mixed strategy Nash equlibriumq is = 1/3 p = " 2/3 ! 2 2 1 1 A+ C, Nash M +equlibrium R Then the mixed strategy is 3 3 3 3 ! " 2 2 1 1 and the pure strategy NE are A + ve C, M + R idir ve saf strateji Nash dengeleri de (A,M) 3 3 (C,R)’dirler. 3 3 (A, M ) and (C, R) . andçözümü the pure strategy NE are 3. 3. sorunun (A, M ) and (C, R) . (a) Geriye doğru tümevarım çözümü şöyledir. Önce, 2. oyuncunun sıralı Answer to Problem 3 rasyonel olduğunu varsayarak 2. oyuncu için x tarafından koşullu domine (a) The backwards induction outcome Answer to Problem 3 is as below. We first eliminate action y edilen y’yi eliyoruz. 1. oyuncunun da sıralı rasyonel olduğunu varsafor player 2, by assuming that player 2 is sequentially rational and hence (a) eliyoruz. The backwards induction outcome is as by below. We first eliminate eliminate r’yi Bunun nedeni l’in r’ı koşullu domine etmesidir. Ikinciaction y willyarak not play y, which is conditionally dominated x. We also for player 2, by assuming that player 2 is sequentially rational and hence olarak, sıralı rasyonel olduğunu ve12’nin 1’in sıralı rasyonel action r for2’nin player 1, assuming that player is sequentially rational.olduğunu This is will not play y, which is conditionally dominated by x. We also eliminate because r is varsayarak, conditionally dominated by l.that Second, assuming 2 bildiğini ve c’yi eliyoruz. Bunun nedeni, 1’in that sıralıplayer rasyonel action r for bplayer 1, assuming player 1 is sequentially rational. This is is sequentiallybecause rationalr and that player 2 knows that player 1 is sequentially is conditionally dominated by l.bilir Second, that olduğunu bilen 2. oyuncu 1’in r oynamayacağını ve buassuming durumda b 0player 2 rational, we eliminate b and c. This because, that player is is sequentially rational andisthat player 2knowing knows that player 1 is 1sequentially getirirken, c oynamak 1 getirir. Sıralı rasyonel olduğundan, a oynamalı. sequentially rational, 2 would not play r, andthat hence rational,player we eliminate b know and c. that This1iswill because, knowing player 1 is Son olarak, 1. oyuncunun olduğunu, b would lead sequentially to(i)payoff ofrational, 0, and sıralı that by2 would playing c would lead tooyuncunun aplay payoff playerrasyonel know that 1(ii) will1.not r, and hence b would to payoff of must 0, and that a. by playing would1’in lead to a payoff of 1.2. Being sequentially rational she play that oyuncunun sıralılead rasyonel olduğunu bildğini veFinally, (iii)1’incassuming 2’nin sıralı 1. Being sequentially she must play that a. Finally, that (i) player 1 isofsequentially rational,rational (ii) player 1 knows playerassuming 2 is rasyonel olduğunu bildiğini bildiğini rational, varsayarak L’yi eliyoruz. Bunun ne- 2 is (i) player 1 is sequentially (ii) player 1 knows that player sequentially rational, and (iii) player 1 knows that player 2 knows that deni,1 (ii) vesequentially (iii)’nin 1’in 2’nin we aand veeliminate x(iii) oynayacağına kanaat ve that rational, player knows thatgetirmesini player knows player is sequentially rational, L. 1This is because (ii)2and player is sequentially we L. This da1 (i) R oynamasını sağlamasıdır. (iii)dolayısıyla lead player to1sayesinde conclude that 2rational, will play aeliminate and x, and thusisbybecause (i) he (ii) and (iii) lead player 1 to conclude that 2 will play a and x, and thus by (i) he plays R. (b) 1. oyuncunun stratejisi vardır, 2. oyuncununsa 6 (seçilecek eylemlerle plays4 R. (b) Player 1 has strategies playerwhile 2 hasplayer 6 (named the actions be to be adlandırılan). (b) 4Player 1 has while 4 strategies 2 has 6by(named by theto actions chosen). chosen). ax ay bx cy cx cy ax ayby bxcx by Ll 0, 1 0, 1Ll 0,0,11 0,0,1 1 0, 0, 1 0, 1 0, 11 0, 1 0, 1 Lr 0, 1 0, 1Lr 0,0,11 0,0,1 1 0, 0, 1 1 0,0,11 0, 1 0, 1 Rl 1, 2 1, 2 2, 0 1 2,1,00 1, 1 1, 0 Rl 1, 2 1, 2 2, 0 2, 0 1, 1, 24 1, 2 4−1,1,4 1 −1, Rr 1, 2 1, 2Rr −1, −1, 1, 04 1, 1 1, 0 (c) Rasyonelleştirilebilir stratejileri2 hesaplayın. 2 Ilk olarak,(c)LlCompute ve Lr Rlthetarafından kesin dominestrategies. edilirler. 1’in rasyonel set of all rationalizable olduğunu varsayarak, Ll ve Lr oynamayacağı sonucuna varıyoruz. Ll ve First, Ll and Lr are strictly dominated by strategy Rl. Assuming that player Lr’yi eliyoruz ve indirgenmiş oyun alttaki halininot alıyor 1 is rational, we conclude that he would play Ll and Lr. We eliminate Ll and Lr, so the game is reduced to ax ay bx by cx cy Rl 1, 2 1, 2 2, 0 2, 0 1, 1 1, 0 Rr 1, 2 1, 2 −1, 4 −1, 4 1, 1 1, 0 Now for player 2 cx and cy are strictly dominated by ax. Hence, assuming that (i) player 2 is rational, 3 and that (ii) player 2 knows that player 1 is rational, we eliminate cx and cy. This is because, by (ii), 2 knows that 1 will not play Ll and Lr, and hence by (i) she would not play cx and cy. The game is reduced to ax ay bx by Rl 1, 2 1, 2 2, 0 2, 0 Rr 1, 2 1, 2 −1, 4 −1, 4 There is no strictly dominated strategy in the remaining game. Therefore, all the remaining strategies are rationalizable. (c) Compute the set of all rationalizable strategies. First, Ll and Lr are strictly dominated by strategy Rl. Assuming that player 1 is rational, we conclude that he would not play Ll and Lr. We eliminate Ll and Lr, için so the is reduced to Şimdi, 2. oyuncu cxgame ve cy ax tarafından kesin domine edilirler. ax ay bx by cx cy (i) 2’nin rasyonelRl olduğunu 1, 2 1,ve 2 (ii)2, 2’nin 0 2,1’in 0 rasyonel 1, 1 1, 0olduğunu bildiğini 2 1, 2 −1, 4 −1, 4 1, 1(ii)1,sayesinde, 0 varsayarak cx ve Rr cy’yi1,eliyoruz. Bunun nedeni, 2 1’in Ll Now for player 2 cx and cy are strictly dominated by ax. Hence, assuming ve Lr oynamayacağını biliyoruz, dolayısıyla, (i) sayesinde de cx ve cy that (i) player 2 is rational, and that (ii) player 2 knows that player 1 is rational, oynamaycaktır. Oyun alttaki haline indirgenir we eliminate cx and cy. This is because, by (ii), 2 knows that 1 will not play Ll and Lr, and hence by (i) she would not play cx and cy. The game is reduced to ax ay bx by Rl 1, 2 1, 2 2, 0 2, 0 Rr 1, 2 1, 2 −1, 4 −1, 4 There is no strictly dominated strategy in the remaining game. Therefore, the remaining strategies rationalizable. Kalan oyundaallbaşka kesin domine edilenare strateji yoktur. Dolayısıyla, tüm kalan stratejiler Answer rasyonelleştirilebilirdir. to Problem 4 Denote by y the winner of the first round of voting (either the bill or the 4. 4. sorunun çözümü amendment). In the second round of voting between 0.6 and y, the Moderates will vote for whichever is closer to 0.5; the Democrats will vote for the higher tax Ilk tur oylamanınrate galibine y diyelim (kanun değişiklik). and the Republicans willtasarısı vote forya theda lower tax rate. Ikinci Since the Democrats Republicans will always the winner will be tur oylamada, 0.6and ile the y arasında, Ilımlılar hangisiback 0.5’edifferent yakınsaproposals, ona oy verewhichever is also backed by the moderates. We can denote the winner of the cekler; Demokratlar dah yüksek olan vergi oranına, Cumhuriyetçiler de düşük second round of voting by f (y) defined as follows: olan vergi oranına oy verecekler. Demokratlar ve Cumhuriyetçiler hep farklı f (y) = 0.6 if y > 0.6 oy or verdikleri y < 0.4 vergi oranlarına oy verecekleri için, kazananı Ilımlıların neye be= alttaki y if y ∈ [0.4, 0.6] lirleyecek. Ikinci turun kazananını f (y) olarak gibi tanımlayabiliriz For the first round of voting, the moderates will choose whichever of x1 and x2 will cause the outcome of the second round of voting to be closer to 0.5; i.e. f (y) = 0.6 y > 0.6 veya 0.4 |0.5 −yf< (x) |. Similarly, the Democrats will choose they choose argeger minx∈{x 1 ,x2 } arg maxx∈{x1 ,x2 } f (x). And the Republicans will choose arg minx∈{x1 ,x2 } f (x). y eger y ∈ [0.4, 0.6] Again, since=the Democrats and the Republicans will always back different proposals in the first round, the winner will be whichever is also backed by the Ilk tur için, ılımlılar, x1 ve therefore x2 ’den ikinci sonucu 0.5’e yakın ya- given x1 , the |0.5 − en f (x) |. Then, moderates; y = turdaki arg minx∈{x 1 ,x2 } Democrats is min {0.6, 0.5 + |0.5 − x1 |}; i.e. if x1 is optimal of x2 for the pacak olanı seçerler, yani, choice argmin x∈{x1 ,x2 } |0.5−f (x)|’i seçerler. Benzer şekilde, larger than is 0.4, they would choose x2 to be as large as possible while being Demokratlar da argmax Cumhuriyetçiler de, argminx∈{x1 ,x2they x∈{x } f (x)’i 1 ,xthan 2 } f (x)’i choose closer to 0.5 is xseçerler. 1 (so that the moderates back x2 ); otherwise to be smaller than 0.5 in introducing 0.6. Then, if the Republicans choose x seçerler. Ilk turda, Demokratlar ve Cumhuriyetçiler hep1farklı tasarıları seçecekleri the bill, the Democrats will introduce an amendment with a higher tax rate, için, kazanan ılımlıların seçtikleri olacaktır, yani y = argminx∈{x ,x2 } |0.5 − that the moderates back in both rounds. So the best 1that the Republicans can f (x)|. O zaman, xdo optimal x2 seçimi min{0.6, 0.5+ 1 veriliyken, is to chooseDemokratların x1 = 0.5. Thus, full description strategies of the three parties in equilibrium |0.5−x1 |}’dir, yani, eğer x1 a0.4’ten büyükse, of x2the ’yi olabildiğince büyük seçerler, are as follows: Republicans choose x1 = 0.5; in the first round, they vote 0.5’e x1 ’in olduğundan daha yakın olacak şekilde (böylelikle ılımlılar x2 ’yi desteklerler); aksi durumda 0.6 seçerler. O zaman, eğer Cumhuriyetçiler x1 ’i 3 4 0.5’ten daha küçük seçerlerse, Demokratlar ılımlıların iki turda da destekleyecekleri daha yüksek bir vergi önerirler. Dolayısıyla, Cumhuriyetçilerin yapabileceklerinin en iyisi x1 = 0.5 seçmektir. Dolayısıyla, dengede üç oyuncunun stratejileri şöyledir: Cumhuriyetçiler ilk turda x1 = 0.5 seçerler ve argminx∈{x1 ,x2 } f (x) için oy verirler, ikinci turda min{0.6, y} için oy verirler. Demokratlar x2 = min{0.6, 0.5 + |0.5 − x1 |} seçerler, ilk turda, argmaxx∈{x1 ,x2 } f (x) için oy kullanırlar ve ikinci turda max{0.6, y} için oy kullanırlar. Ilımlılarsa, ilk turda argminx∈{x1 ,x2 } |0.5−f (x)| için, ikinci turdaysa argminz∈{0.6,y} |0.5 − z| için oy kullanırlar. 5