Development of AFLP markers associated with

advertisement
Turkish Journal of Botany
Turk J Bot
(2015) 39: 982-987
© TÜBİTAK
doi:10.3906/bot-1502-35
http://journals.tubitak.gov.tr/botany/
Research Article
Development of AFLP markers associated with zucchini yellow mosaic
virus resistance in cucumber (Cucumis sativus L.)
1,*
1
1
2
Hasan Özgür ŞIĞVA , Ahmet Fikret FIRAT , Gülden HAZARHUN , Ahmet İPEK
1
May-Agro Seed Corp., Bursa, Turkey
2
Department of Horticulture, Faculty of Agriculture, Uludağ University, Görükle Campus, Bursa, Turkey
Received: 17.02.2015
Accepted/Published Online: 19.10.2015
Printed: 21.12.2015
Abstract: Zucchini yellow mosaic virus (ZYMV) is one of the most important pathogens that cause significant yield losses in many
cucurbit crops including cucumber (Cucumis sativus L). ZYMV resistance in cucumber is inherited by a single recessive gene. The
purpose of this study was to identify molecular markers linked to the gene conferring ZYMV resistance in cucumber. We developed
a population of 188 F2 plants derived from inbred cucumber lines. Individual F2 plants were self-pollinated to generate F3 populations.
Ten randomly selected plants from each F3 population were tested for ZYMV resistance. We used a bulk segregant analysis method to
identify putative molecular markers linked to ZYMV resistance. Using bulked DNA samples with parental lines and F1, a total of 170
sequence-related amplified polymorphism (SRAP), 586 simple sequence repeat (SSR), and 308 amplified fragment length polymorphism
(AFLP) primer combinations were screened. Neither polymorphic SRAP nor SSR markers were linked with ZYMV resistance. Among
the 308 AFLP primer combinations tested, an AFLP marker in the E-ACA/MCA primer combination showed significant association
among parental lines, F1, and resistant and susceptible plants. The combination of E-ACA/M-CA was achieved on parental lines, F1, and
188 F2 individuals for confirmation of the marker segregation on the F2 population. We found that the combination of E-ACA/M-CA
was linked to the zym locus with 6.91 cM.
Key words: Cucumber, Cucumis sativus L., zucchini yellow mosaic virus, molecular markers, AFLP, SSR, SRAP
1. Introduction
Zucchini yellow mosaic virus (ZYMV) is one of the aphidborne viruses that was discovered in southern Europe
30 years ago (Gal-On, 2007; Amano et al., 2013). It is a
member of the family Potyviridae and genus Potyvirus
(Regenmortel et al., 2000). ZYMV is an important virus
that causes significant damage and losses in cucumber
yields (Provvidenti et al., 1984; Yuki et al., 2000; Park et al.,
2004; Amano et al., 2013). This virus is transported from
plant to plant by aphids. Especially in the late summer
and early fall, aphid populations are increased due to
favorable environmental conditions, and therefore virus
epidemics in these seasons can be promoted (Kosaka et
al., 2006; Amano et al., 2013). Due to the limitations in
chemical, biological, and other plant protection methods
for viral diseases in greenhouse cultivation, the most
important plant protection method is to generate virusresistant cucumber cultivars. In cucumber, inheritance
of the ZYMV-resistant trait has been characterized
and derived from TMG-1 (Taichung-Mou-Gua) and
Dina-1 (Dina). Both TMG-1 and Dina-1 inherited a
recessive allele at a single locus, zymTMG-1 and zymDina-1
*Correspondence: hasansigva@gmail.com
982
(Providenti, 1987; Abul-Hayja and Al-Shahwan, 1991;
Kabelka et al., 1997; Park et al., 2004; Amano et al., 2013).
Transfer of the recessive resistance gene into susceptible
cultivars is time-consuming, laborious, and costly, and
the only way to overcome these problems is the use of
molecular markers. Park et al. (2004) developed sequence
characterized amplified region (SCAR) and cleaved
amplified polymorphic sequence (CAPS) markers that
were linked to the zym locus. However, these markers may
not segregate in all resistant and susceptible lines, making
them unusable for marker-assisted selection. Recently,
Amano et al. (2013) also developed both CAPS-T86C and
dCAPS-G99A molecular markers that were linked to the
zym locus.
Many simple sequence repeat (SSR) and sequencerelated amplified polymorphism (SRAP) markers have
been developed and used for the development of highdensity genetic maps and for whole-genome analysis and
identification of candidate genes for the important traits in
cucumber (Li and Quiros, 2001; Ferriol et al., 2003; Yeboah
et al., 2007; Fukino et al., 2008; Watcharawongpaiboon and
Chunwongse, 2008; Hu et al., 2010; Li et al., 2011; Meng et
ŞIĞVA et al. / Turk J Bot
al., 2012; Amano et al., 2013). Several amplified fragment
length polymorphism (AFLP) primer combinations were
also used for wide genome analysis and identification of
candidate genes in cucumber (Park et al., 2000; Witkowicz
et al., 2003; Bae et al., 2006). The purpose of this study was
to determine additional molecular markers linked to the
ZYMV resistance gene in cucumber (Cucumis sativus L.)
using SRAP, SSR, and AFLP markers.
2. Materials and methods
2.1. Plant material
In order to develop mapping populations, a ZYMVresistant inbred line, BTL_HTP_1, and a susceptible
inbred line, BTL_HTP_2, were used as parental lines.
These parental lines were obtained from the May-Agro
Seed Corp. cucumber breeding program. Both resistance
and susceptibility of parental lines to ZYMV were assessed
using pathogenicity tests (Yardımcı and Korkmaz, 2004).
A single resistant plant from BTL_HTP_1 as a female and
a single susceptible plant from BTL_HTP_2 as a male
were crossed to generate F1. Single susceptible F1 plants
were self-pollinated to generate an F2 population with 188
plants. Each F2 plant was self-pollinated to develop 188
F3 populations. Ten plants from each F3 population were
tested for resistance to ZYMV to determine the genotypes
of the F2 plants.
2.2. Virus maintenance, storage, inoculation, and
detection procedure
ZYMV virus inoculants were tested and stored at –80
°C in a freezer (Thermo Scientific REVCO Value Series,
Waltham, MA, USA) until use at May-Agro Seed Corp.
ZYMV virus inoculum was prepared by grinding infected
cucumber leaves according to Yardımcı and Korkmaz
(2004). To determine the genotype of F2 plants, 10
randomly selected plants from each F3 population were
planted in a mixture of 70% peat and 30% perlite. Ten days
after planting, carborundum-dusted cotyledons of 10-dayold seedlings were mechanically inoculated by a sponge
dipped in inoculum solution. After inoculation, all of the
inoculated plants were kept in a growth chamber for one
night under high humidity (85%–90%) and transferred to
a greenhouse the next day. All plant materials were kept at
25 °C with a 16/8 h light/dark photoperiod.
Two weeks after inoculation, all of the inoculated plants
were scored as 1: no symptoms, 3: slight mosaic limited
to lower leaves, 5: clear mosaic on lower leaves and slight
mosaic on upper leaves, 7: moderate mosaic on upper
leaves, or 9: severe mosaic on all leaves. Parental lines
were included in the analysis as resistant and susceptible
controls. After the calculation of disease severity index (DI
= Σ[(s × n)/(S × N)] × 100, where s = disease rating scale,
n = number of plants with each disease rating, N = total
number of plants, S = highest disease rating scale), scores
of 3.0 or less were considered as resistant and scores greater
than 7.0 were considered as susceptible. Results between
3.0 and 7.0 were considered as heterozygous genotypes.
After morphological evaluation, ZYMV virus detection
was performed using double-antibody sandwich enzymelinked immunosorbent assay (DAS-ELISA) methods
developed by Clark and Adams (1977). DAS-ELISA was
carried out according to the manufacturer’s protocol
(Agdia Inc., Elkhart, IN, USA). All of the measurements
were performed at 405 nm wavelength in an ELx808
microplate absorbance plate reader (BioTek Instruments
Inc., Winooski, VT, USA). Healthy plants (as a control), a
negative control, a positive control, and buffer were used
for every test. All samples were regarded as positive if the
measurement was more than twice that of the control
healthy plants. One month after this measurement, all
analyses were replicated for a double-check.
2.3. Molecular analysis
2.3.1. DNA isolation
All of the DNA was isolated from leaves of the plants at the
3–4 true leaf stage with the DNeasy Plant Mini Kit (QIAGEN,
Limburg, Netherlands) using the manufacturer’s protocol.
DNA concentrations of all samples were measured
quantitatively and qualitatively with a spectrophotometer
(Eppendorf Biophotometer Plus, Hamburg, Germany) at
A230, A260, and A280 wavelengths. The isolated DNAs were
stored at –20 °C.
2.3.2. SRAP analysis
A total of 17 forward (ME) and 10 reverse (EM) previously
tested SRAP primers were selected for genotyping analysis
(Li et al., 2001; Ferriol et al., 2003; Yeboah et al., 2007;
Meng et al., 2012). PCR amplification of DNA with ME
and EM primer combinations was carried out according to
the protocol described by Ferriol et al. (2003). Each PCR
reaction of 25 µL contained 1X PCR buffer, approximately
50 ng of template DNA, 0.3 µM of each forward and
reverse primer, 200 µM dNTP, 1.5 mM MgCl2, and 1 U
of Taq DNA polymerase (Fisher Scientific, Pittsburgh, PA,
USA). All PCR amplifications were carried out using a
C-1000 thermal cycler (Bio-Rad Inc., Hercules, CA, USA)
and the following thermal cycling conditions: 5 min at 94
°C; 5 cycles of 1 min at 94 °C, 1 min at 35 °C, and 2 min
at 72 °C; and 30 cycles of 1 min at 94 °C, 1 min at 50 °C,
5 min at 72 °C. The PCR products were fractionated on
3% Super Fine Resolution (SFR) agarose gel, stained with
EtBr, and visualized on a gel documentation system (BioRad Inc.). All SRAP primer combinations are given in
Supplementary Table 1 (on the journal’s website).
2.3.3. SSR analysis
A total of 586 previously developed primers of
SSR markers were selected for genotyping analysis
(Watcharawongpaiboon and Chunwongse, 2007; Fukino
983
ŞIĞVA et al. / Turk J Bot
et al., 2008; Hu et al., 2010). Each PCR reaction contained
1X reaction buffer, approximately 50 ng of template DNA,
0.5 µM of each forward and reverse primer, 200 µM of each
dNTP, 1.5 mM MgCl2, and 1 U of Taq DNA polymerase
(Fisher Scientific). All PCR amplifications were carried
out in a C-1000 thermal cycler (Bio-Rad Inc.) using the
following thermal cycling conditions: 3 min of initial
denaturation at 94 °C; 36 cycles of 30 s of denaturing, 45
s of annealing at 50–60 °C, and 1 min of elongation at 72
°C; and a final elongation step of 5 min at 72 °C. The PCR
products were fractionated on 3% SFR agarose gel and
stained with EtBr. PCR products were visualized on a gel
documentation system (Bio-Rad Inc.). All SSR primer
sequence information is given in Supplementary Table 2
(on the journal’s website).
2.3.4. AFLP analysis
AFLP analysis was carried out according to the protocol
described by Vos et al. (1995) with the modifications of
Park et al. (2000). A total of 308 primer combinations
were selected for genotyping analysis. All AFLP primer
combinations are given in Supplementary Table 3 (on the
journal’s website). AFLP products were visualized on the
4300L DNA Analysis System (LI-COR Inc., Lincoln, NE,
USA).
2.3.5. Bulk segregant analysis
Bulk segregant analysis was performed with the protocol
described by Michelmore et al. (1991). The genotypes
of all F2 plants were determined via pathogenicity test
as susceptible, resistant, and heterozygous. DNA from
20 homozygous susceptible (BS-1 and BS-2) and 20
homozygous resistant (BR-1 and BR-2) plants was
pooled for preparation of ZYMV-susceptible and ZYMVresistant bulks, respectively. In total, 170 SRAP primer
combinations, 586 SSR primers, and 308 AFLP primer
combinations were selected for genotypic screening in
order to find any polymorphisms between susceptible
and resistant bulk groups as well as the resistant parent
BTL_HTP_1, the susceptible parent BTL_HTP_2, and
F1. Polymorphic primer combinations were used on all F2
progenies and compared with phenotypic data to calculate
the distance between the zym locus and the candidate
marker.
3. Results
3.1. Phenotypic and serological analysis of ZYMV
Two weeks after ZYMV inoculation, all of the inoculated
plants were scored with resistant and susceptible parental
lines. After calculation of the disease severity index, 3.0
or less was considered as resistant and greater than 7.0
was considered as susceptible. Between 3.0 and 7.0 was
considered as still segregating. Healthy plants and plants
with slight and severe mosaic symptoms are shown in
Figures 1a–1c. According to phenotypic observation
984
results in F3 populations, 39 F2 plants were homozygous
resistant, 52 F2 plants were homozygous susceptible, and
97 F2 plants were heterozygous. According to DAS-ELISA
analysis, 46 F2 plants were resistant homozygous, 51 F2
plants were susceptible homozygous, and 91 F2 plants were
heterozygous. According to the chi-square test, phenotypic
and DAS-ELISA results fit a genetic segregation ratio of
1:2:1, confirming the previous results that ZYMV resistance
was inherited by a single recessive gene (Providenti, 1987;
Kabelka et al., 1997; Park et al., 2004; Amano et al., 2013).
Phenotypic and serological analyses of ZYMV resistance
in the F2 population are shown in Table 1.
3.2. Molecular analysis
3.2.1. Bulk segregant analysis
After phenotypic and serological analysis, all of the F2
genotypes were determined as susceptible, resistant, or
heterozygous. DNA from 20 homozygous susceptible (BS1 and BS-2) and 20 homozygous resistant (BR-1 and BR-2)
plants was pooled for preparation of ZYMV-susceptible
and ZYMV-resistant bulks, respectively.
3.2.2. SRAP analysis
A total of 170 SRAP primer combinations were screened
using resistant and susceptible parental lines with F1
and resistant and susceptible bulk DNA samples. There
were 760 DNA bands amplified with 170 SRAP primer
combinations. Approximately 8.95% (68) of these
DNA bands were polymorphic. However, none of these
polymorphic SRAP markers were linked to ZYMV
resistance.
3.2.3. SSR analysis
A total of 586 SSR markers were also screened using
resistant and susceptible parental lines with F1 and resistant
and susceptible bulk DNA samples. Among the 586 SSR
markers, only 52 SSR markers (8.87%) were polymorphic
and there was no correlation between ZYMV resistance
and polymorphic SSR markers.
3.2.4. AFLP analysis
A total of 308 AFLP primer combinations were screened
using the same DNA samples. Among the 308 AFLP
primer combinations tested, the combination of E-ACA/
M-CA showed expected segregation on both parental
lines, F1, and bulk groups. AFLP primer combinations of
E-ACA/M-CA are shown in Figure 2 with their segregation
on the parental lines, F1, and bulk groups. The E-ACA/MCA primer combination was tested on parental lines, F1,
and 188 F2 individuals in order to calculate the genetic
distance between the marker and the zym locus. We found
that the combination of E-ACA/M-CA showed 93.08%
correlation with phenotypic data. We thought that the
combination of E-ACA/M-CA was linked to the zym locus
with a distance of 6.91 cM.
ŞIĞVA et al. / Turk J Bot
a
b
c
Figure 1. Healthy plants (a) and plants with slight mosaic (b) and severe mosaic (c) symptoms on cucumber leaves.
Table 1. Phenotypic and serological analysis of ZYMV resistance in F2 population.
Number of observed plants
Population
Total
plants
F2:3 (phenotypic observation)
F2:3 (DAS-ELISA results)
Positive
Expected
ratio
χ2
97
52
1:2:1 0.369
91
51
1:2:1
0.795
Negative
Negative/
positive
188
39
188
46
4. Discussion
ZYMV is one of the most important virus diseases in
cucumber. It causes significant amounts of yield loss in
greenhouse cultivation (Provvidenti et al., 1984). ZYMVresistant cucumber cultivars have been developed by using
conventional breeding methods. Pathogenicity testing in
conventional breeding is time-consuming, laborious, and
more expensive. In addition, pathogenicity testing can
easily be affected by the environment. Due to the recessive
inheritance of the zym locus in cucumber, test crosses are
required after every backcross of conventional breeding
in order to determine the progeny carrying the recessive
resistance gene (Purcifull et al., 1984; Amano et al., 2013).
Therefore, development of DNA-based molecular markers
and use of them in marker-assisted selection breeding is
critical to increase efficiency of ZYMV-resistant breeding
in cucumber.
In marker development studies, it is necessary to
characterize phenotypes of the segregating population.
In our study, out of 188 F2 plants, 39 were homozygous
resistant, 97 were heterozygous, and 52 were homozygous
susceptible in phenotypic observation; however, in DAS-
985
ŞIĞVA et al. / Turk J Bot
Figure 2. Polyacrylamide gel showing amplicons. M, male; F,
female; F1, from BR1 to BR6 and from BS1 to BS6 screening with
E-ACA/M-CA.
ELISA analysis, 46 were homozygous resistant, 91 were
heterozygous, and 51 were homozygous susceptible. This
discrepancy between phenotypic and DAS-ELISA results
is probably due to the sensitivity of the DAS-ELISA
method compared to phenotypic observation.
ZYMV is inherited by a recessive allele at a single locus,
zymTMG-1 and zymDina-1 (Kabelka et al., 1997; Park et al.,
2004; Amano et al., 2013). According to our phenotypic
evaluation results, we confirmed that ZYMV resistance is
conferred by a single recessive locus.
Bulk segregant analysis is an effective and rapid
procedure to identify the gene(s) of interest in segregating
populations. This method has been used for both
monogenic qualitative traits and quantitative trait loci
(Michelmore et al., 1991; Collard et al., 2005). Besides, this
method allows rapid and convenient molecular screening
of the bulk groups.
We developed an AFLP marker that linked to the zym
locus in our cucumber breeding material with 6.91 cM.
Park et al. (2004) developed a linked DNA-based molecular
marker for the zym locus in cucumber. However, this
marker did not segregate in any of our 42 inbred cucumber
lines. Amano et al. (2013) also developed other CAPST86C and dCAPS-G99A CAPS markers derived from
RFLP markers for the zym locus.
In this study, the combination of E-ACA/M-CA
was linked with the zym locus and showed the correct
correlation of the F2 population with parental lines and
F1. Because of some restrictions of AFLP methods, it is
necessary to convert SCAR markers to use for markerassisted selection in breeding. This marker will be
converted to a SCAR marker in a future study.
Acknowledgments
The authors would like to special thank Dr Geoffrey Lloyd
Thomas for his valuable scientific support. This research
was supported by the Scientific and Technological
Research Council of Turkey (TÜBİTAK, project no.
TEYDEP/3120013) and the May-Agro Seed Corporation.
References
Abul-Hayja Z, Al-Shahwan I (1991). Inheritance of resistance to
zucchini yellow mosaic virus in cucumber. J Plant Dis Prot 98:
301–304.
Amano M, Mochizuki A, Kawagoe Y, Iwahori K, Niwa K, Svoboda
J, Maeda T, Imura Y (2013). High-resolution mapping of zym,
a recessive gene for Zucchini yellow mosaic virus resistance in
cucumber. Theor Appl Genet 126: 2983–2993.
Fukino N, Yoshioka Y, Kubo N, Hirai M, Sugiyama M, Sakata Y,
Matsumoto S (2008). Development of 101 novel SSR markers
and construction of an SSR-based genetic linkage map in
cucumber (Cucumis sativus L.). Breed Sci 58: 475–483.
Gal-On A (2007). Zucchini yellow mosaic virus: insect transmission
and pathogenicity—the tails of two proteins. Mol Plant Pathol
8: 139–150.
Bae KM, Kwon YS, Cho IH, Yi SI (2006). Use of cDNA-AFLP for
transcript profiling in narrow genetic pools; for example,
cucumber (Cucumis sativus L.). Plant Breeding 125: 488–492.
Hu J, Li J, Liang F, Liu L, Si S (2010). Genetic relationship of a
cucumber germplasm collection revealed by newly developed
EST-SSR markers. J Genet 3089: 28–32.
Clark MF, Adams AN (1977). Characteristics of the microplate
method of enzyme-linked immunosorbent assay for the
detection of plant viruses. J Gen Virol 34: 475–483.
Kabelka E, Ullah Z, Grumet R (1997). Multiple alleles for zucchini
yellow mosaic virus resistance at the zym locus in cucumber.
Theor App Genet 95: 997–1004.
Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005). An
introduction to markers, quantitative trait loci (QTL) mapping
and marker-assisted selection for crop improvement: the basic
concepts. Euphytica 142: 169–196.
Kosaka Y, Song RB, Kobori T, Shiomi H, Yasuhara H, Kataoka M
(2006). Effectiveness of an attenuated zucchini yellow mosaic
virus isolate for cross-protecting cucumber. Plant Dis 90: 67–
72.
Ferriol M, Picó B, Nue F (2003). Genetic diversity of a germplasm
collection of Cucurbita pepo using SRAP and AFLP markers.
Theor Appl Genet 107: 271–282.
Li G, Quiros CF (2001). Sequence-related amplified polymorphism
(SRAP), a new marker system based on a simple PCR reaction:
its application to mapping and gene tagging in brassica. Theor
Appl Genet 103: 455–461.
986
ŞIĞVA et al. / Turk J Bot
Li Y, Yang L, Pathak M, Li D, He X, Weng Y (2011). Fine genetic
mapping of cp: a recessive gene for compact (dwarf) plant
architecture in cucumber, Cucumis sativus L. Theor Appl
Genet 123: 973–983.
Meng H, Chen S, Cheng Z, Chai D, Li Y (2012). SRAP markers for
fruit shape in cucumber. Pak J Bot 44: 1381–1384.
Michelmore RW, Paran I, Kesseli RV (1991). Identification of
markers linked to disease resistance genes by bulked segregant
analysis: a rapid method to detect markers in specific genomic
regions by using segregating populations. P Natl Acad Sci USA
88: 9828–9832.
Regenmortel MH, Mayo MA, Fauquet CM, Maniloff J (2000). Virus
nomenclature: consensus versus chaos. Arch Virol 145: 2227–
2232.
Vos P, Hogers R, Bleeker M, Reijan M, van de Lee T, Hornes M,
Frijters A, Pot J, Peleman J, Kuiper M et al (1995). AFLP: A
new technique for DNA fingerprinting. Nucleic Acids Res 23:
4407–4414.
Watcharawongpaiboon N, Chunwongse J (2008). Development and
characterization of microsatellite markers from an enriched
genomic library of cucumber (Cucumis sativus L). Plant Breed
127: 74–81.
Park Y, Katzir N, Brotman Y, King J, Bertrand F, Havey M (2004).
Comparative mapping of ZYMV resistance in cucumber
(Cucumis sativus L.) and melon (Cucumis melo L.). Theor Appl
Genet 109: 707–712.
Witkowicz J, Urbańczyk-Wochniak E, Przybecki Z (2003). AFLP
marker polymorphism in cucumber (Cucumis sativus L.) near
isogenic lines differing in sex expression. Cell Mol Biol Lett 8:
375–381.
Park YH, Sensoy S, Wye C, Antonise R, Peleman J, Havey MJ (2000).
A genetic map of cucumber composed of RAPDs, RFLPs, AFLP
markers and loci conditioning resistance to papaya ringspot
and zucchini yellow mosaic viruses. Genome 43: 1003–1010.
Yardımcı N, Korkmaz S (2004). Studies on spread and identification
of zucchini yellow mosaic virus disease in the north-west
Mediterranean region of Turkey by biological indexing and
double-stranded RNA analysis. Plant Pathol J 3: 1–4.
Provvidenti R (1987). Inheritance of resistance to a strain of zucchini
yellow mosaic virus in cucumber. Hort Science 22: 102–103.
Yeboah MA, Xuehao C, Feng CR, Liang G, Gu M (2007). A genetic
map of cucumber (Cucumis sativus L.) combining SRAP and
ISSR markers. Afr J Biotechnol 6: 2784–2791.
Provvidenti R, Gonsalves D, Humaydan H (1984). Occurrence of
zucchini yellow mosaic virus in cucurbits from Connecticut,
New York, Florida, and California. Plant Dis 68: 443–446.
Purcifull DE, Adlerz WC, Simone GW, Hiebert E, Christie SR
(1984). Serological relationships and partial characterization of
zucchini yellow mosaic virus isolated from squash in Florida.
Plant Dis 68: 230–233.
Yuki VA, Rezende JAM, Kitajima EW, Barroso PAV, Kuniyuki H,
Groppo GA, Pavan MA (2000). Occurrence, distribution, and
relative incidence of five viruses infecting cucurbits in the state
of Sao Paulo. Plant Dis 84: 516–520.
987
ŞIĞVA et al. / Turk J Bot
Supplementary Table 1. SRAP primer combinations used for SRAP screening of parental lines and F1, BR, and BS groups.
Forward primers, sequence of primers (5’-3’)
Reverse primers, sequence of primers (5’-3’)
ME1
TGAGTCCAAACCGGATA
EM1
GACTGCGTACGAATTAAT
ME2
TGAGTCCAAACCGGAGC
EM2
GACTGCGTACGAATTTGC
ME3
TGAGTCCAAACCGGAAT
EM3
GACTGCGTACGAATTGAC
ME4
TGAGTCCAAACCGGACC
EM4
GACTGCGTACGAATTTGA
ME5
TGAGTCCAAACCGGAAG
EM6
GACTGCGTACGAATTGCA
ME6
TGAGTCCTTTCCGGTAA
EM8
GACTGCGTACGAATTCTG
ME7
TGAGTCCTTTCCGGTCC
EM9
GACTGCGTACGAATTGAT
ME8
TGAGTCCTTTCCGGTGC
EM14
GACTGCGTACGAATTCAG
ME9
TGAGTCCAAACCGGAGG
EM18
GACTGCGTACGAATTCCT
ME10
TGAGTCCAAACCGGAAA
EM20
GACTGCGTACGAAATTCTT
ME11
TGAGTCCAAACCGGAAC
ME12
TGAGTCCAAACCGGTAG
ME13
TGAGTCCAAACCGGCAT
ME14
TGAGTCCAAACCGGTCT
ME21
TGAGTCGTATCCGGTCT
ME22
TGAGTCGTATCCGGAGT
ME23
TGAGTCGTCTACGGTAG
1
ŞIĞVA et al. / Turk J Bot
Supplementary Table 2. SSR primer sequences: linkage and position used for SSR screening of parental lines and F1, BR, and BS groups.
SSR marker
name
Forward primers, sequence of primers
Reverse primers, sequence of primers
Linkage
Position
CSN084
TCCTTTGTCACTCACTGTGCTTCC
TGTTGCAGAGGGAAGCATCTTTTT
6
72.2
CSN051
ATCAACGATTGATCCATCACCATC
AAGACTTGACCACATGCATGGAAA
6
68.7
CMBR41
GTACCGCCTAGGGTTTCTCC
CGAGGAAGAGAGAGAAGGGG
6
37.1
SSR3411
GTTGGAGTCGTGGAGAGAGC
ATTTGAAGGGAGACGTGTGG
1
42.3
SSR4278
GAGGGAAGAAAATTGAAAGCAA
CCGATAGTGTCAGCCCACTT
1
41.3
CU421
AAATCCACCTCTTCGTTGGA
GGGTGATACAAGGAGCGAAG
1
0
CS27
GCTGAGTTATGGGGAAAGCA
ATGTTGTTGGACCCCTTCAA
1
73.3
SSR1737
GATGATGATGGTCATCGTGG
TCAAAGGATGGAAGAGGTGG
1
77.8
SSR1115
ATTCCCAATCCCAAAAAGGT
CTCCTCCTCCAATGAGCAAG
1
19.8
SSR1091
CTCATCTCCGAACTCCCAAC
TGGTAACAAGGTGGATCGAA
1
70.4
CMN21_55
TCATTGATCTTTTGCTTTTGC
TGGTAGCAAACATCTGCCTG
1
38
SSR262
CCGTTGGTCTTGGACTCTCA
TGTAAAAGTGATCAGGAGGGTCT
1
89.8
SSR190
TTCTGAAACGACACCTCCAG
TCCCCTTCTAATTTACCTTCCA
1
4.8
CSJCT662
ACGTCGTAAAACCATCGGAGTC
GCTTCCAAGCGTCAAAGGTATC
1
40.8
SSR231
GAGGTTGGGAAATTGGGAAT
TATTCAAACACAAAGCCCGC
1
58.2
SSR10134
CCAAAACCAAAAGCAAAATCC
AAATTTGCCAGGAACACCAG
1
29.2
CU84b
GGATTCGACTGTCTCAACCG
CATCATGCCATTTCATCGAC
1
3.4
SSR5793
CCCTCTGCTGCACATTATCC
TGCACCAAGCAATAACTTGTC
1
5.3
SSR5723
TGGCTTTTCTGTCACGTCC
TCCATGGTACAACAAGAATCACA
1
81.8
CU742
TGCTTTTCAGTACCTCCCTCA
GGAAGAGCTGCCACTGCTAC
1
45.9
SSR5124
TCTTTACCAATTTTATGGTGATGTT
AATCAAGGGTGCAAATGTCA
1
24.6
GCM206
TGGGCTACCTCTATCCTTTCTT
AATCCCCAAAATCTCAACCA
1
96.6
SSR3222
TCCACAGTCTTGCATTTGCT
ATCCCCTCGATTCACATCAA
1
96.6
SSR479
GGACGCCACGATTCTACAAG
GGATGTTCGAGTTGCAGACC
1
97.5
SSR2733
TTGTTAGGTAAGCCATGCCC
TTTGCCTGAGGAAGAATCTGA
1
72.8
CU1680
CCCACCGTTATCCTCATTTC
AGAAGGCAAAGGCAAATTCA
1
17.4
SSR2734
TGTTGTTGGACCCCTTCAAT
TGTCAAAGGAGGAGGTGGAG
1
72.8
SSR160
TGAATGAAAAACGTGATGTTGA
TTGGAAAAGCCTCTCATTCG
1
12.6
CMN21_88
CAGTCCTCCCCTTCTTCTCC
TCAGTCGCAACAGCAAGAAC
1
0
CSN135
ATTCGATCTCTATATTTTACTCC
CACAATGTTTGACATATAGAC
2
70.6
CMBR103
TGGTTGAGGAAGACTACCATCC
TCCACTAAAGTTTCCTTATGTTATGG
2
55.8
CMBR83
CGGACAAATCCCTCTCTGAA
GAACAAGCAGCCAAAGACG
2
55.8
CMBR95
TTGACCTTTTACGGTGGTCC
CGGACAAATCCCTCTCTGAA
2
55.8
CSWCT04
ACTATTGGGTCTCTCCTA
GACCCGAGGTTATTATT
2
55.8
CMTC160A+b
GTCTCTCTCCCTTATCTTCCA
GATGGTGCCTTAGTTGTTCCG
2
46.4
CSN310
AAAATTGCCCAGTATGTGTTT
TGCATCTATACTTTGTCAAGTC
2
42.1
CSN242
TCCTTTTATACCACTAGGTCAACCCAT
ATAGCCTGACCATCTAATCGCCAA
2
32.9
GCM295
CCTATGTGCTTCCTTCAATCA
CGCATAATTCAATGAAAATGAGT
2
22
CSWCTT02D
CATCCTCATTCATGGCGGAGTGTG
GAATTTGTTAAAAATGTACATTAA
2
5.2
CSN052
ATGGGTTTCCAAATGTTTGTCTCG
CATCTCCATGCATTCCACTCTCAT
2
2.3
SSR30
TGAAATTGCTTACCCTTTGACC
CCATGTTTTGTAGGGATCGAG
2
41.6
2
ŞIĞVA et al. / Turk J Bot
SSR1286
CCGAAAACCATTGTTCAAGC
TTTAGCTTAGTTTCCAAGCACTGA
2
57.7
SSR1253
CGCTGGATTTGTTTGTGAAAT
AATGTCGGGGAGTGTCACAT
2
89.9
CU1594
CTACACCGGCGGACATTACT
GAGCGAAGAATGAGAGGTGG
2
5.2
SSR1374
GGGAGATTCTCAAAATGGATGA
TTGCGTGTAAGGAACGTCAC
2
37.3
CU1817
GAAACTCCAAGGAACCCCTC
TGCATTGTCTGGTGATCCAT
2
94.6
SSR4035
TCCGCTTCGAGTACGCAT
ACAAGAATGCTGGAGATGGC
2
55.8
SSR218
CGATCTTCGAGTTTCGCAAT
ATCCAACGGCTCTCATTCAC
2
51.3
CU1458
GCTCTGTTCCTTAGGGAGGG
GGGGTTTTGGTTTTTGGTTT
2
4.7
SSR3610
GGGGAAATACGTGAAAGAGG
GGTCAAATGTCAAAGAGCGG
2
18.1
ECM92
SSR2634
TCAGACTCCATTTCAGAGCCTA
CAAGGAGCTCTCCCCATTATT
2
40.2
GGGTTTGTGACACGTTTCCT
GGCAAAGGCAACAAGTTTCT
2
65.3
SSR11596
TCACATAGGCTTGCTCCAAA
TCAAACACCGCGAAAGAGAT
2
48.4
CU2297A
TTCATATTCTAGTGTCAGCCAAACA
TGAGTGGTGAGGGATTCACA
2
105.8
CU2239b
TTTCTTCTTCGCAGTCACCA
AGGTCAGCCCCAAATTCTCT
2
55.3
SSR5748
TGTGGCCTGTGCTAAAATGA
TTTGGAAAAGCTAAAGCCCA
2
0
SSR204
AACCCTATTTGCACGCATTC
GAGAAACAGCTGGAATTGGG
2
20.1
SSR3084
GACAAGGGATTCATCCGAGA
CAGACCCTGAAGCGGATAAA
2
9.9
SSR289
AGGACGAGGCTAATGGGAGT
TTACAAGTCCCCCTCAAACG
2
25.5
SSR10874
CTGGTTATAAATTCTGATGGTGATT
ATGCTGCCATGTTACTCGTG
2
78.9
ECM115
TTCCACATGTCTCTGCCAAA
TAGCCGGTGGAAATGGATTA
2
17.1
SSR6722
TCTCGTTTATGTGGATTAGTCGAG
TATGTTCACCCAATGCTCCA
2
72.7
CMCTN2
CTGAAAGCAGTTTGTGTCGA
AAAGAAGGAAGAGGCTGAGA
2
13.5
SSR10522
TTCCTTTTGTTTTTGGTATGGG
ATGTCTGCTTTGCTGGCTTT
2
55.3
SSR11468
CCGTTTCACCGCTCATTTTA
TCACAAGTGGCCAAAACAAA
2
63.4
CSN257
TGGAGAAAAAGAAGAAGTGGGTGA
CAAGTGGGTCGTGAATTTTGTTTAG
2
0.9
CSN076
ATCTATAATACTACATGCACAC
AATTGCACTTACAATGAGA
5
18.4
ECM80
CGTCCCCTTGTTACTACCTCA
AAATCCTCCCTACATATATTATGCAAT
3
17.8
SSR2736
AATCCACTCCACAGGCTCAC
CGTAGAGAAGCGCCTTGGTA
3
60.6
SSR3049
AGAGAAGAGTGCAACCAATGC
TGTACGATCTTGTGGCTAGAGAA
3
0
SSR3056
TTGCCTGTCACATGATCAAAA
TGCCTTCCATGTAAAAGCAC
3
84.5
ECM53
CTACCAGTTGTTGCGGCTCT
TCCCAATTCCATAGCAGAGG
3
68.4
SSR2132
CAATTGGTATGAGTGAAAGATAAGC
CTCTGGTCCACCCAATCCT
3
61.7
SSR33797
GACCCATGGGGTTATCAGAA
TCTTGATGGCCGATCTATCC
3
68.9
SSR5012
GCCCTAGGCTTCGTCTTCTT
TTCTACAACTGGCCAAACCC
3
107.1
CMN21_33
ATTCTTCAACAAGCCATCCG
GGAAATTAGCACCAAGCGAA
3
96.7
SSR5572
GCAAACCATAAGTTTCCCCA
GATCGATATTGCAACGAATTACA
3
85.5
CU832
CGTGTTTTCTCAGATTTCCCA
CACTTCCCTTATCAACCCCA
3
85.5
SSR5891
GTTTGGGTATAGGGAGACCG
TGAGATGTCGAGAACTCCATACA
3
22.9
SSR6210
TTGGAAAAGTCGCCAAACTT
TCCATGTCTGCTTTTGATTCC
3
59
SSR10282
GGCACTCATTTCGGTTGACT
CACGGACACAAATCACAATG
3
103
SSR1056
AAAGGGAAAGGTAAATTGCCA
AGCAGTTCGGATGATATTGGA
3
77.2
CSN209
CCTGAACACAAATCTAAAAGAGCAGGA
AGCATAAGCCTACGACCTACGGGT
3
62.2
SSR7505
GACAGGACCGTTAACCCAAA
CTCCCTCTTTCCCTCACTCC
3
67
ECM134
TCTTTCCTCTGCAAATCCTTCT
TGCTAAAGCTACATGCTGTCCT
3
81.3
3
ŞIĞVA et al. / Turk J Bot
4
TJ10
ACGAGGAAAACGCAAAATCA
TGAACGTGGACGACATTTTT
3
23.4
SSR2008
TTGTCCTGGAAATTGGTGAA
GGTGGGAAGTTTGTAAATGAGAA
3
69.8
CMBR153
TCAAAGACAAGAAGACCAACCA
TGTGCTAAGAGAGAGAGAGAAGATTG
3
72.2
CMBR43
AGAGATGCTCCCTACACTGC
TCAAGCAAACCCTAATCGGT
3
87
CMBR57
GCTCTGAAGAGTGGAATGAGAGA
CCATTTGGGAAGTAGGCATC
3
98.2
CMN61_14
TGCAGGATCAAGAATCAAGTTC
ACGAACTCCGGCATAATCAC
3
2.9
CSN002
AAAATGGGAAAAGTGGA
GCCTTAACTAAATGACAAA
3
5.4
CSN018
TGTCTTTCCCTCAAACTACACCCC
CCAAATGGGGTTCAACAAAGAAAC
3
94.7
CSN069
GATGTATGCTTATTTATACCCAA
AGAAAATTAATCAAGACCTCTC
3
86
CSN147
CCACCCAACCAAAAAGCAGTAAAC
GATGGGAGCAAATGTTGGTTTTGT
3
77.7
CSN153
TGGGTTTGCACACTCAAGAGAAAG
AACATGAGAGTTCTCTTGCCCACC
3
49.4
CSN160
GTAGCAGAAGCCTCACCGGAGTAA
CTTGTAGCAGAAGGCTTCCACGTT
3
2.3
CSN161
GTCCTTTCTGCCATTTTCTTGGGT
CCCAAATTTAGTGGCTTCAACATCA
3
36.4
CSN166
CGTTCCTTCCCACTCTTCACATTT
TTTGATGATGATGATGATGAGCCG
3
27.4
CSN171
TGCACAACAGTGTTTAGCTTGATGA
TGAAGCCGAAGTAGATGAGACCTTC
3
55.6
CSN191
TAGATTTTTCATGAAGGGCGTTGG
CGTCATTGTGACTGGAGGTAGCAT
3
22.9
CSN201
TCAACTTACACACACCCACACAAAA
GTGGTTCGTCATTCCAGTTTATTTG
3
109.1
CSN251
ACCGACAAGCAGAGAGAAGAAAGC
ATTTGGACTCATTTTGAGCACCGT
3
17.8
CSN284
AGCACCCCGGTATTTCTCTTTGAT
TAAAGAGGCGAAAAGTTCGGAAGC
3
31.9
CSN306
TTTCCTCCCCTTTCCTTCATTCTC
CAACCCAAATGCTTAGAGAACCCA
3
90.3
GCM246
AAAACGGAGATGTGGAGGAC
TTAAGCAAGCAGCCAAAATG
3
65.1
CSN025
AAATAGACTTTGACCCTTTT
GTCTGTATTTCAAATCTAACTC
4
2.8
SSR10368
TGTTCCGGCTCTTCAGAGAT
GCCCGTATTTTATAAATAGTTTCATTT
4
70
CSJCT323
TCGATCTTGTAGAAAGCAAGGA
CAAGCAAATTCCCATTCACC
4
0
CSN066
GGATCCGAAATAGAGAAAGGAAA
GTTGTTTGGGTGTTAATGTGAAA
4
1.4
SSR2697
TGCTAACCCAACCAAACAAA
CTGCCATTTCAAGCTATGGG
4
64.4
CU1791
AATGATGCACGAACAAACCA
ATTGGCCCGAAGTAGGTCTT
4
98.8
SSR5899
TAAGAGCAAAAATCCCACGC
AGCTCAATCAACGTCAAGAGAA
4
25.2
SSR1949
AGGAAAACCGGAAGCAGAAT
TCCACAGAACAACCGTGAAA
4
2.3
SSR3598
TCAACAACAAGACAACCCCA
TGGTCCCTTTTGATTTCTGG
4
5.2
SSR7130
CCACACACACACACAGTCACA
TCCCATTGTCCCTCACTCTC
4
56.4
CSJCT42
GAGAGCCCCACCACCAGTCT
GGATCCATGGCGCCTATAAATACC
4
52.2
SSR12
TCTCACCATGGTCACCTAATG
GGTCATTGAAGAGTCAAGTTGG
4
22.8
SSR7209
CTGTCTGCAGAGCCATCTGA
CCATCAAGTTGAGGAGCAAA
4
1.4
SSR2803
ATTGCTCCCAAGCAACTTGA
ATTTCAAACCTCCAAGGCTG
4
28.6
CU1830
TCCTTTCCCCCATAATGACA
GGTGGTTATGGTGGTGGTTC
4
46.2
SSR4482
GGAATGAATAAGTTCTGGAAGAAG
CTTCCCATCAAAAAGCCTCA
4
55.5
SSR6225
TGTATCATTCCAATCCCTCCA
CGAAGTCCAAATTGATAAAGGC
4
41.2
SSR203
AATAGCTCGAAAATGATGGCA
CCTCAAAGAGGATCAAGCGA
4
71.4
SSR2895
GAGTTGGCAAGTCACGTTGT
TTTCCCTCATTATGCCATCC
5
93.1
CSJCT435
TCAACTGGTAGTTGGGAAACCT
CTGTCAATCAATGCTTCAGCTC
5
0
CSWTA13
AGATGGGCAGTTAGAGTTGATGCT
CATTTAAAGCCTCATCAACACCTC
5
47.2
CSWTA04
TAAACATATGTGATTATACAGCAA
GTGTTTTGGTGTTATGTGAATATC
5
0.5
GCM344
TCATCAGTCAGTAAGAGAGAGAGAG
ATGTGACCTGATCCCATTGA
5
34.6
ŞIĞVA et al. / Turk J Bot
SSR6447
AAGTATGACGACACCCTTCG
CGCAAAACCGAAAGGTACATA
5
22.1
CSJCT315
CCACGAAATACAGATCAGCAAC
CACGTTACATTGGACGAGAGAT
5
17.9
CSWCT32
GCATTAAATTGGAAAGGGGAATCA
TGTCCTTTAATTTGGAAATTGAAT
5
26.6
CSJCT14
TTCCACGTTACATTGGACGA
AGAATTCATGGCCTGCAGAT
5
17.4
CSN140
TGTTTGCTGCCCTAGGGTTTCTTA
TTAGAAGTGCATGATGCTCACAGC
5
28.4
CU174
ATTGTTGTAATGGGTTGGGG
TTCCAAGCAAACTGAAACCC
5
18.4
CSN259
TTGTTTGTGACATCGTGGTGGTTA
CCAAATCTTTCCCAATCCATCTTG
5
34.6
CSJCT661
GGGTCATACCCAAAAGGGAGA
TCTTGCTTTAGCCGACAACTCA
5
11.8
SSR772
AGAAGCGTTGGGGGAAAATA
TGCTACCTCACATGGTTTTG
5
79.9
SSR11439
CGTAATTCCGCATCGTTTTT
CGAGAACATGATCGTCTCCA
5
72.3
SSR2166
TCGATTTCAAACACTCCACTTG
TCAAACAAACTACATGCCACAA
5
90.5
SSR2693
TTTCAGCCATTGGTTTCCAT
CCAAAGCCAGTACAGCGTTA
5
63.6
CSWCT13B
TGTGATCAACCAACTTCA
GAATTATGGGTTCATTTT
5
83
CSN061
ACTTCAATCTCATATACTGTG
TACCACTGGGATCCTAA
5
83
SSR2459
TCGGAAGATGGGTTATTTGG
TGACCCCTCACATTCTCTCC
5
96.3
SSR7081
GGCGACTTTGGAGTGTAACAA
GGAAAGATATTCTCAGGGAATCTAA
5
20
CMAGN32
CAGATTAGAAGAAAAAGAGG
AGCAGACAGCATATAAAGCT
1
9.2
CSN114
CTTTCAAAATTCGAGGCAAAACCC
TGATCCAATGATGTAAGAGGGTGTG
1
14.5
CSN197
ACAAGAAAACCCCACAAATGCAAG
CGAAAGCCTGAAAAGGGCAAAATA
1
39.9
CSN220
TCATCGATCCAACTAAAACACCCC
ATCGAACCACAAAGGGGTAAGTGA
1
54.3
CSWTA05
GCATGAGCTCGAGCTGGTGTAGTG
CGCCTGTTTTCATTTTGATTGGTT
1
22.7
TJ24
AAACACGGGCTTGAAGAAAA
CCCAGAAGGTGAGAGAGACCT
1
40.8
GCM106
CAATTCAGTGAGAGAGAGAG
ACCGAATACACATGATTACA
6
10.6
SSR1191
TTCTTTCAAATGCCCATCAA
AAAGATATGGGTGGGAGCAA
6
8.2
CU1792a
ATGAGCATTGAGCAGTCACG
GGTGTATTTGTGAGGGGTGG
6
42.9
CSN282
GGAAAATGAAATCATGTGCTCCTTC
TCGTCATTCTAAGTTACCTGGTTTGC
6
82
CSWATT02
CCAGTACAAATAACATCCCGAAGC
CAAACCTCTTTCAGTACCGGAATA
6
79
SSR2123
TGGAAAATGACAGCAACCAA
CCATTCTTCCTTTCCACGAA
6
59.8
CSWCT25
AAAGAAATTAAGTCAATCAAACCG
CCCACCAATAGTAAAATTATACAT
6
79.7
SSR4910
CAACACCCATTCATTGACAAA
TCTGCAAAGCTCAGAAGCAA
6
48.1
CMN01_74
GCTTTCCCTTCCCTCGTATC
AATTGCACGCACAAAGTACA
6
35.2
SSR2460
CTCAGAAACCCTTCCACCAA
CTGTACCGCGAGGACAGTTT
6
82
CS52
GCCTCAACCAAACATCCAAT
ACAACCTTGCCATCTGGTTC
6
17.2
SSR5267
TGCAGCCTAATTTAAACCCC
TGTGAAGAAGTCAGACGCAAA
6
16.7
CSN095
CAGAAGCCTTGCAACTCTTAGGAA
TGTTTCAGTGTCTCAGGTCCATCC
6
1.9
CSWCT29
TGGACGAGTTGCTCTTGTAAGCCT
ATCAAACTTGGCATGTGGCATGAC
6
6.3
CSWCT03
TTCTCAGAACTGCCACTG
CACTCTTGAGGGGAAAAA
6
79
CSJCT77
TCAGAGTGAATGAGCTCATGGAAG
TGACGTCCGCAAGGACACAG
6
44.3
CSJCT720
CCAACGGAGGTCTGAACG
CAGCGGAGAAAGGCTCAG
6
80.1
SSR842
CGCCCAAATTGAACGAATAA
CCTCCGCCTTTCTTTCTTTT
6
43.4
CSJCT674
TAGAAAGGAAGGGATGTGATTAGG
ACAGGTGGTTAGAGGTTAGAGCTG
6
45.2
CSWCT05B
ATACGAACTCTTTTATTTTATAGG
ATTAAGGAGATAAGAATTGTGTTG
6
82.5
CSN116
GTGCGTTGGAAGAAAGAAAGGAAA
ATGTGGAGCAAGTGTTGTCTCGTC
6
25.6
SSR5946
CCTGAGAATCGAAGGTCACA
GCCATCACTAACTGACGCCT
6
88.3
5
ŞIĞVA et al. / Turk J Bot
6
CU2063
GAGAAACCAAAAACAGACCCC
AGACCGGGAGACAGAGGAAT
6
82
CU886
CAACTCTGTTCCCTAAACTTCTTCTC
CCACTGTTTCTTCTATTCATCTTCTG
6
64.7
CSJCT266N
CTGTGGTTGGGTTGGAAATCTC
GGGAGGCAGTAGACACATCC
6
91.1
SSR2086
CCAGAAGGCTAAAGGTGGAG
GTAATGTTCTGGCCAAGCG
6
37.1
CU934
CTCCACGAACCTTCCTTCAC
ATTGTTCGGCTTGGTTCAAT
6
63.8
SSR973
TTGGGGCTGTTCTAATTTCG
TCGTTGTTGAAGCCAAAGAA
6
41
CSN263
ATTACAACCACAAGTGGCGAGACA
AGCTGATTTCACCACAGCTTCAAA
6
84.4
SSR6240
TTGAACATGAAAAGTATTGGCG
TTGCAACTAAGGTGTGCTATTCTC
6
80.1
SSR158
GTGATCAGGAATGGTTTGGG
ATCTTCTTCTCCACCACCGC
6
0.5
SSR300
TGCCGACAAAGAGTTTTTCA
TGCTAATTCATTCATACTTTGTCACTT
6
50
SSR19
ATTCTCGTGAACCATCACCC
ACTTTTGCCACTTGGCACTT
6
22.7
SSR1643
TGCAGGTCGACAATTCAATAA
TCAAAAGGCACATGTGATGTC
6
89.7
CSN227
GCTAAACTCCCACGCATCAAACTT
CCAGAGAGTGGAGAGCAAATGGAT
6
40.5
CSWGCA01
AGTGATGGTGCAGGGCTATCTTAT
TTGTCTTCCCTCCTCTTCTCGTCT
6
0
SSR233
AACCATAAAGTCGGGAGGGT
GGGAAAGGCAGGAGAAAAAC
6
79.5
SSR1582
AATGCGAATTATGCGATATGA
AATGCCGGTCTCTACAATGC
6
60.3
CSN126
GCAGAAGCCTTATTCTCCCAGAG
AATTGGTGTATTTGTGAGGGGTGG
6
42.9
CSN208
TGCATCTGGTCTCCTTCTTCTTGT
AATGAGGCTTTTTGGAAGAGGAGG
6
84.9
SSR7198
AACAACAGTTGCATTTTTAGATTTT
GGTGAGAATTTGTTGGTCTATCG
6
16.7
CSWCT16B
CTTATGGTCGGAGAAG
CTCAGATAACCCAAAATA
6
57.9
CU2345
TCATTTGGGTGAGCATTTGA
GCCAAAGTCGACATGCTTCT
6
35.7
CMBR145
TGTGACAATGTGCAACCAG
AAAAATGGTGTTAAACGACATGG
6
72.2
SSR259
TCCACGTAGACATTGTGAGGTC
CGAGTGTAGCTCAATTAATATGGTG
6
35.7
SSR2385
CGCTCTCTCTCCACTTTTGG
AAAAGTGACCGTTGGAGTGC
6
29
CSN293
TCATGTTCAAATCTCATTCCCCCT
ATAAAGAACACACATGGTGGTGGC
6
60.3
SSR3940
GATTCTCCGGAAACGGATTT
GTCGTTTTCCGCGATTCTAC
6
29
SSR3962
CTTTTTGGGGACCCTTCATT
CACGAATGCTGCTCTAACCA
6
60.3
CSN287
AGGGAGATAGTATGACAAGATTTCCTC
AGTGGGGTTGAGCAAGTTGAAGAC
6
82
SSR1148
CGGAGAAAGGCTCAGAAACA
TGCACGCACATAAACTAGGG
6
80.1
SSR4252
AAAGAACACACATGGTGGTGG
AAGGAGTGTTTGAATAGGCCG
6
60.3
SSR3357
AAAAGGGCAAGTCAAAACCC
GGGGAGGAAGAGAGACCCTT
6
91.1
SSR4637
ATCTGGTACCGCTGTTTTGC
GTGTTTGATGTACGCGGTTG
6
31.4
CMCTN86
GTGACAGTTATCAAGGATGC
AAGGGAATGCATGTGGAC
7
5.5
SSR215
GGAGCCCTAGTAGGAAACCG
GGACCACGTGAAAGATTCAGA
7
36.1
CMN05_87
GTCCCTCACATTCTCCTCCA
TTCGGAGGATTGGTATTTGC
7
14
SSR3076
GGGATGTAGGAGGGGATTGT
TCGTTTATGACAGCATTTCCA
7
55.8
CSN183
TGGACCACGTGAAAGATTCAGAAA
GCCTACAACTATCCCAAATGGAGC
7
36.1
CSWTA11B
GGTAGGCAATCAAAGAGTGGATGG
AACATATAGGAATCTAACAAAGTG
7
9.7
CSN244
CACAACGTGTGTGCAACTAAACGA
TGTTTCCCTTCTCCATGCTCCTTA
7
7.6
SSR6585
GCAGGTCATACTCTTTAATTATTCCA
TGTTATCATCGCCATACCCA
7
12.6
CU1094
TGCTAAAACAATGCAGCACA
TAACAACCCCATCAAAAGGC
7
50.7
SSR4847
TCGTGCCTCATTTGGTAGTG
GCCAAGGTAACGAATTGCAT
7
25.3
SSR477
TATTGCGATGGTTTGACGTG
GCAAATTCCGGAGTTCGTTA
7
67.2
CSN266
TTTTAGGTGCCATCCTTGACTTGG
TCCTAAGGTATTGATTCCACGATTC
7
0
ŞIĞVA et al. / Turk J Bot
CSN159
TGGTTCAGAAAGGGGAAAATCAGA
TTTCACACCATTTACGGTTATGGG
5
79.4
CSN172
TCTCAACCCAGATTTGACCTACCA
CCCCTGGAAGTAAAGGTGACACTG
5
84
CSN184
CTTTATCTTCGGCTTTGATGTCCG
TCCATAGCAGTTCCCAATGTCCTT
5
91
CSWCT13BALT
ATAGGGCAATTTGTCTCT
CACTGGGATCCTAACAAC
na
na
CSWCT17
TTGAATTATGGGTTCATTTTT
GACAATGATAAACTTCCCTGA
5
85.6
CSWCT24B
ATCGCTTTATCTTCGGCTTTGAGT
AATCCATAGCAGTTCCCAATGTCC
5
91
CMTCN56
CTTTTCTCTTCTTCTATTCTC
ATCCAAAAGGAATCGGAAAG
4
54.6
CSN121
GCATGCGACATTTTGGATTCTTC
CCCATGACCGAAAGAGGAATATGA
4
53.7
CSN145
AGTTCCAGGTCAGATCTCTT
TCGATCCAATAATATTGGGATGG
4
41.2
CSN157
GAAGCTCCTCAAACCATT
ACTATGTTGAAAGATTGATCCT
4
38.3
CSN181
ATCTTGTCCGTTTGCTTGATCCAT
GTGATTTTGGCTACTCCAAGGTCG
4
70
CSN295
GCAACTAACCCATAAATGAAGAGATGC
TCAAAAGGCAATGGACCTTACACA
4
28.1
CSWCT06B
TTTAAATTCTTCCTAACC
TTTGCTTTGCATTTGGAT
4
31
CU2994_1
CATGATCCAACCATGATCCA
GGCTAAATCCATGGGCACTA
na
na
CU2994_2
TGATCCAACCATGATCCAGA
GGCTAAATCCATGGGCACTA
na
na
CU2994_3
CCATGATCCAGAAGACGACA
GGCTAAATCCATGGGCACTA
na
na
CU2998_1
AAAGGGGTTTCCATTCTTCTG
CTCTGTCCTTTGCAGCATCA
na
na
CU2998_2
GGGGTTTCCATTCTTCTGTCT
CTCTGTCCTTTGCAGCATCA
na
na
CU2998_3
AGGGGTTTCCATTCTTCTGTC
CTCTGTCCTTTGCAGCATCA
na
na
CU3009_1
ACGGTGAGTTCCTCGTCATC
CTCTATTTTCCATTCCGCCA
na
na
CU3009_2
TCCTCAACGGTGAGTTCCTC
CTCTATTTTCCATTCCGCCA
na
na
CU3009_3
CGGTGAGTTCCTCGTCATCT
CTCTATTTTCCATTCCGCCA
na
na
CU3015_1
GGACATGGAGATCGAGGAAA
GAATTCGTGGATGAAAGGGA
na
na
CU3015_2
GGACATGGAGATCGAGGAAA
CGTGGATGAAAGGGAAGAGA
na
na
CU3015_3
GGACATGGAGATCGAGGAAA
TCGTGGATGAAAGGGAAGAG
na
na
CU3031_1
AATGAAGGAAAAGATCCGGC
GTGTTGTCGGCACAATTGAC
na
na
CU3031_2
AATGAAGGAAAAGATCCGGC
TACAAGTTCTTGGCTCCCGT
na
na
CU3031_3
AATGAAGGAAAAGATCCGGC
GTGTTGTCGGCACAATTGAC
na
na
CU3035_1
TCCCAAACTCATCTCATCACC
GGCTCTGCCATTGTGTTTTT
na
na
CU3035_2
AAATGGGGTCTCCCATAATTG
TTTTTCCATCTGAGGGGATG
na
na
CU3035_3
AATGGGGTCTCCCATAATTG
TTTTTCCATCTGAGGGGATG
na
na
CU3056_1
CTGAGAAAATTGGCCTTTCG
TCCTGTACCTTCGTCTTGGG
na
na
CU3056_2
CTGAGAAAATTGGCCTTTCG
CCTGTACCTTCGTCTTGGGA
na
na
CU3056_3
TGAGAAAATTGGCCTTTCGT
TCCTGTACCTTCGTCTTGGG
na
na
CU3073_1
GAGCAACCTCAGCATCACAA
TTTGGGTAGCCAAGAAATCG
na
na
CU3073_2
CCTCAGCATCACAAAGGACA
TTTGGGTAGCCAAGAAATCG
na
na
CU3073_3
AGAGCAACCTCAGCATCACA
TTTGGGTAGCCAAGAAATCG
na
na
CSJCT10N
TGTAAAACGACGGCCAGTAACTCTCATGGGAAACAGAG
ATTCTTCTCAACCTCTTCCT
na
na
CSJCT 22
TGTAAAACGACGGCCAGTCCGTTCTGGCGCGCGATAGA
CGTGGATAACGCGCAACTAACC
na
na
CSJCT 77
TGTAAAACGACGGCCAGTTCAGAGTGAATGAGCTCATGGAAG
TGACGTCCGCAAGGACACAG
na
na
CSJCT 108
TGTAAAACGACGGCCAGTGCCCGTTCTGGCGCGCGATAGA
GTGGATAACGCGCTCAACTAACCT
na
na
7
ŞIĞVA et al. / Turk J Bot
8
CSJCT 134N
TGTAAAACGACGGCCAGTCTGCTTGAAAGAGCCGAGAATGAG
TCAAAAGGCTTTGGAGGGAG
na
na
CSJCT 156
TGTAAAACGACGGCCAGTTCGTGGATAACGCGCTCAAC
GCGATAGAAAAAGAGAGCG
na
na
CSJCT 254
TGTAAAACGACGGCCAGTGCCAACTATAGCCATTGATTTG
TCAACACCTCCTCAACACT
na
na
CSJCT 290N
TGTAAAACGACGGCCAGTAACACCTCGAGCAAGAGCAG
GGGTTTGAATCTCCCAGTCC
na
na
CSJCT 358
TGTAAAACGACGGCCAGTGGGTGAACAACCAAGAGAGAA
TGAGGGAGCGGTTGATTAGAG
na
na
CSJCT 390
TGTAAAACGACGGCCAGTGAATTTAGGCATAGAGAGAAAGTGG
CCCTAAACAGAAGACTTTGCTAC
na
na
CSJCT 565
TGTAAAACGACGGCCAGTGAAAGAGCGGGAGAAATGGAAACTC
AAGCGGTGGGAATTGAATTGGTTC
na
na
CSJCT 598
TGTAAAACGACGGCCAGTTCCCAAACATAGAATGCGATAATA
CTGTCTGTTTTTCGATCTTGTAGA
na
na
CSJCT 619
TGTAAAACGACGGCCAGTAACAAAGAACTAAGCAATTCCAGG
CTTAGGAGAAGCCAAGACACTAGG
na
na
CSJCT 651
TGTAAAACGACGGCCAGTAGAGCGGGAGAAATGGAAAC
CGGTGGGAATTGAATTGGTT
na
na
CSJCT 656
TGTAAAACGACGGCCAGTTCCTACAACTCAAAGGGCCAAC
GAAGTGGAGTGGAGTGGAGTGA
na
na
CSJCT 661
TGTAAAACGACGGCCAGTGGGTCATACCCAAAAGGGAGA
TCTTGCTTTAGCCGACAACTCA
na
na
CSJCT 664
TGTAAAACGACGGCCAGTAAGTGGGCTCGATTGGAAGA
CCGTCGCCTTTCTCAAGTTC
na
na
CSJCT 726
TGTAAAACGACGGCCAGTGAAGAGACGGCTCCTTTCAG
CCCGATTTGTCGTCTCTCTC
na
na
CSJCT 933
TGTAAAACGACGGCCAGTGATGACATGGACATGTCTGCTTTGC
AAGATCTCTCCCATCTACCAACTTACC
na
na
CSJCT 944
TGTAAAACGACGGCCAGTGGCCTAGAATTTAGGCATAGAGA
GCTGTCTTTATGTTTCTGCAAC
na
na
YCZ-SCAR-1
GGGGAATGAGTGGATGCAAGATG
GGGTAGTTGGCGATTGACATTG
na
na
YCZ-SCAR-2
GGCTATTGTACCCTATGAACAAC
GTAGCACAAATAGGATTTAAGGTC
na
na
YCZ-CAP-1
GACCTTAAATCCTATTTGTGCTAC
GCGGCTTGGACTTGGCTCAAC
na
na
YCZ-CAP-2
CATTCGTTGATGTGGAAGACCTGTC
CAGAAGCAGAGCCGTCACTCTCC
na
na
M1
GCTTTGGAAAGAATTGTAAACG
CAGTTGTAAAAGTGAGAGCTTGG
na
na
M2
ATTACAAGTTAGGGGACAATGAAAG
CGACCTTGGTGAATTAGAGATTAG
na
na
M3
CACTCTAATCTCTAATTCACCAAGG
TGGGGGTTTTCTTGAGAGTT
na
na
M4
TGTTCTTCAAATCACGTATCCT
TGGGCAGAATTTGAACTTGT
na
na
8164
ATGTGTGATTTGCAGATTTTCATAG
ACCTTCCCTGATCGACTCCT
na
na
SCBC469
TTGAGCGAAAAATACATACC
TGACAAACTTTAGGCTGACAT
na
na
SCL19
TCGAGGAACATCTTTACTT
TTATTCTTATGTTGATCGCTTGTC
na
na
SCK7
CTCACGCAAAGCCCTCAGA
TAGAAACTTCGAATAATCAGACAG
na
na
SCAA9
CGACCCGCCTCACTTAGC
GTCTTCACCGGCATTTTG
na
na
SCAO7
TGCGAGCCAAATCCCATCT
AGTGGAGTGGAGACGCAGAGA
na
na
SCAI4
GAAGTCCGTGTCTATTATTGAT
ATTACATTGTGGCAGTCTTTC
na
na
SCBC403
CGGATTTGACGGTAACT
AAGGTCGAGGGATGTGC
na
na
SCL18
ATTTGGTTATTATTTTTATTC
AACTCACCTCAAGATTTAGA
na
na
SCU15
ATCCAGCGCATTCTTTAG
TTCGGCGGACTTGCTTTGGTGT
na
na
ŞIĞVA et al. / Turk J Bot
SCAN5
GGTATTGGTATGTTTTTCTATTTC
GGTTTTACATCAGCCATCCT
na
na
SCBC519
AGATATAAGCGTTGTGAGGAT
ATTATGATAGATTCGTTTTTACC
na
na
SCAK5
GGTATTGGTATGTTTTTCTATTTC
GGTTTTACATCAGCCATCCT
na
na
SCK15
TCCTGCCAAATAAGAGA
TGCCAATCGATCCTAAAAC
na
na
SCAO12
CCTGTCATCTTTGCTCCTAACTAA
CTACGGATAAATCACCTGGACCTT
na
na
CMGA15
CGGCAAGACGATTGGCAGC
ATCACCGTAGCGAAGCACC
na
na
CMCT44
TCAACTGTCCATTTCTCGCTG
CCGTAAAGACGAAAACCCTTC
na
na
CMACC146
CAACCACCGACTACTAAGTC
CGACCAAACCCATCCGATAA
na
na
CMCTT144
CAAAAGGTTTCGATTGGTGGG
AAATGGTGGGGGTTGAATAGG
na
na
CMTC47
GCATAAAAGAATTTGCAGAC
AGAATTGAGAAGAGATAGAG
na
na
CMCCA145
GAGGGAAGGCAGAAACCAAAG
GCTACTTTTGTGGTGGTGG
na
na
CMGA172
CAATCGCAGATACTTCCACG
TGCTTGTCCCAACGGTGTCAT
na
na
CMTC123
CGGATTGTACTTATTGCCAAG
CATGTGCATGTGTGCATGTAC
na
na
CMGT108
CTCCTTCAAACATTGTGTGTG
GAGATAGGTATAGTATAGGGG
na
na
CMTAA166
GGAACAGACACCTCTTCTGAG
TCCGTCTACAAGCGTGACTGT
na
na
CMGA165
CTTGTTTCGAGACTATGGTG
TTCAACTACAGCAAGGTCAGC
na
na
CMCT160A
GTCTCTCTCCCTTATCTTCCA
ACGGTGTTTGGTGTGAGAAG
na
na
CMTC160A+b
GTCTCTCTCCCTTATCTTCCA
GATGGTGCCTTAGTTGTTCCG
na
na
CMCT505
GACAGTAATCACCTCATCAAC
GGGAATGTAAATTGGATATG
na
na
CSCTTT15A
GTTTGATAATGGCGGATTGT
GTAGAAATGAAGGTATGGTGG
na
na
CSGTT15b
ACCTTGTTGATTCGGTTCTCC
AGTTCGGTTTAACTACCCACG
na
na
CSTCC813
GTTGTGCTGCCCAATAGTTG
CACCACTTCTTCCACCGAA
na
na
CSCT335
CCTTCACTTCCATCTTCATC
CGGTCCTTCATTTCATAGAC
na
na
CMTC51
ATTGGGGTTTCTTTGAGGTGA
CCATGTCTAAAAACTCATGTGG
na
na
CSAT214
TTGAGTACCATTGTCATAGAT
TTAGTTTAATTTCATCTCTGT
na
na
CSAT425
TAGGGCAGGTATTATTTCAG
ACGGACTGATTTAGTATAGGC
na
na
CSCCT571
CCTTTCTGCTGTTTCTTCTTC
GAAGGAAGGAGTGAGGGGAAG
na
na
CSTA050
GAATTATGCAGATGGGTCTT
CAAGAAGATCAAATGATAGC
na
na
UW044613
GGCATTCGCATCTTTTATCC
CCAGAATCATTCACATGGCA
na
na
UW044536
GGTATGTGTCAATGCTCCACA
CAAATCTCAAACCCCTTAGTCG
na
na
SSR11654
AGACCCTTTCCAGGAACCAT
CAGAGGTGTCTAAGCTCCCG
na
na
SSR20705
CCTTTCCTTACCCATCCCAT
ACCCATTTGAATCAGCTTCG
na
na
UW045196
CGGCTGGGTCATAAAAAGAA
CATGTGCTCGCTTTTCCATA
na
na
SSR14697
GGGTCAACCTACCAACCGT
CCTTACAGGGAAAACGGTGA
na
na
SSR10018
CTTTTGTTCTTGTGGAATGTGA
ATTTGGGGATGGAGAGGTTC
na
na
SSR16881
CCCTCTCAACATTTTCCACAA
CGAGGAGACTTGATGGGATG
na
na
SSR10839
TTGAATTCCTCTGCCCAATC
TGGAATTTTGTTAGGGGGAA
na
na
UW084469
AAAAATAACCAAGAAAATAGACATTGA
ATGGGATTTTTAAATCACCTTATATC
na
na
UW073856
TGCAAACTCCTTACTTTTTCGG
TCCAAATGGTTAGAAAATGGAGA
na
na
SSR01816
GCCATTATGTAGGGGTATGAAAA
TCGAACTGATTAAGATTGCAAAA
na
na
UW005572
CAAATTGCAACATTTATGTCTGTG
CCATCATTTTCCACGTTAGGA
na
na
SSR16055
CATCCTTTCGACTTTGATGC
CTGCAAACGTGAAGAGAGCC
na
na
UW073923
CCTCCAGCAACATACAATGG
TTGGATCATGCTTGTTTTGA
na
na
UW073982
CATGCCGTCTTTTGTTTCCT
CCAACCTCACAACCCTCCTA
na
na
9
ŞIĞVA et al. / Turk J Bot
UW085111
GCGTATTTCAATGGCACAAC
CAAATCCAATCAAATGCCTG
na
na
UW049617
TGGTTTTGGCCTTTGATTTC
GCCTTGAACCCACATGCTAT
na
na
SSR00420
TAACAACCACCGATCTTCGC
TTTGTATAAAGCTACCAAGGTTTCC
na
na
SSR17196
GGGTCGAGATAAAGCCGTAA
TCGAGCTCGTTGTCGAATAA
na
na
SSR03962
ATGGAGCCCTAATCACGTTG
CCGGCCAAACCCTATAAGAG
na
na
UW084481
TTTTCATTTGATTTTATAACAGTGGA
TGATCTGCATCGCTTCTTCA
na
na
SSR19914
ATGGTCCACCAAACAAATGG
GCTGTACTTGGAATCACTTCCC
na
na
SSR05079
GAGGAAAATTCCAAAAATTGC
TGCGAATTGGTCTCCTCTTT
na
na
SSR03680
AAATGAGTGCCAAAAGCCAT
CCACCGAAAGAGATCAAACAA
na
na
SSR21747
CAGCTGTTCGAGATTCCGAG
GAACAAATGGGGAGAGCAAA
na
na
SSR10963
AGCATGCAATTAATAGGCCA
CAAACAAAAGTAAGAACAAAAATGGA
na
na
SSR11820
ACGACGCCGTATTTGCTTAG
AAGCTCGTTCATTATTACCCAA
na
na
UW084642
GGAATAATGGGACCCCTACAA
TGAACCAAGTCCACAATTGCTA
na
na
UW084812
AAACAAATTTCTTCAAATTGTGATATG
GCATTATTGACAAGATGGTAATGG
na
na
SSR00204
AACCCTATTTGCACGCATTC
GAGAAACAGCTGGAATTGGG
na
na
UW084796
CAAAAGGTCAAAAAGGTGGTG
TGCATTAAATTAGATTAGAAAAATGGA
na
na
UW084786
GCTCCCTATTTCAATTTGTGG
TGAAATTCAACCCAATATAAAGAAC
na
na
UW084848
TTTAAGCGCAACTCAACTCG
GAAGGCTACTACCGTCTTTGTATAG
na
na
UW084632
TTGTACGGATGTTCGGCTCT
TCCTCCAACTGATCATCACC
na
na
UW084849
AAGGAGGGGACAAACAACATT
TTCAAAAGCAAATTCATTACCC
na
na
UW041214
GGGAAGATCAATCGTCCAGA
TCAAAGCATGATGATGAACGA
na
na
UW085088
CTGCGACATGCGATTTTCTA
TTTAATTGGAATATTTCACAATACGTT
na
na
SSR00378
TCCCTAAAATTTCGACAACCC
TTAGTATGGCTTGAACACCCA
na
na
SSR22203
GGTGAGCAAGGGTTTTCTTG
AAGGCGTTCCGATGATTTTT
na
na
SSR10518
TCTAATTCGCTCCGGATGAT
TTGCAGCGAACAATCCTGTA
na
na
UW082429
AGTTGTAGCCATGTGGAGGC
AAATTTGCGTTAGTCTGATGGA
na
na
UW082557
CCACACTTCCTTCCTCATGC
CAAAATAGTGGTTGCCCAAAA
na
na
UW084618
AATCCTCCATGGTTAGGGTAGA
TGAAAATAAATGTGTTCCTGCAA
na
na
UW083140
CCACTTCCACTTTCACCACC
TGAAACCAAAGTCCCACTCC
na
na
UW083192
CCCATCACTTACCCTTTCCA
TCATGTCCGAAACCCCTTAC
na
na
SSR11909
AATAATACCAGTGGCCCCATC
AAAGCTCCCTCCTCCCCTAC
na
na
SSR16916
AGCATGATGAGGATCCCTTG
CCGAACTGCACAAAGTATGG
na
na
SSR12383
AACCATGGCTTAACGAGCAT
TGCGAACTTTTTCCGTTTTC
na
na
UW084457
TCATAACTCCTTGGGGGTTG
GTAAAGTTTGGATTCTATATGGTCAA
na
na
SSR15029
CCTGCTTCCCGTTCAAATTA
TTGTTTCTCAGTCAAATAGCTTCG
na
na
SSR18640
GGCGTTGGGTTAAGCATTTA
CGTGGGTTTTTACCGTCATT
na
na
SSR17769
CAATCAACTTCAAGTGTTGGGA
AAAAGCTTCATTAGTCGCATGTT
na
na
SSR01573
CGTTAGGCCAAACAAAATTGA
TGCAAACGTTTCTCTAGGCA
na
na
SSR02771
AAGTACACCAGCACTTGGGC
CACACTCTTATGGCTTTCGTCA
na
na
SSR22545
TGATGAGCGATGCAGAGAAT
TGCTTTGGTTTGGTGATTTG
na
na
SSR02051
CAGGTCATCTTCTCTTTGACTATACTT
TGCTTTTATCCCCACTTTTCTT
na
na
UW084286
GATGAGATGGAGAGGGTTGG
CACACGAAATAATGTCACTAAAAGTT
na
na
SSR03552
CCAACTTGGAAAATTGCTACA
TTCAGTTCGCTCGTGAAAGA
na
na
UW079378
TGTTCTTCACATGCAATCCAA
TTGAGCCAACACAAGAGAGC
na
na
10
ŞIĞVA et al. / Turk J Bot
SSR02132
CAATTGGTATGAGTGAAAGATAAGC
CTCTGGTCCACCCAATCCT
na
na
SSR18428
CCATTCACTTCCTTTCCAGC
TGGTTTCAAGACCACCCTCT
na
na
SSR20270
TTGGGATGTAGATGTCCGGT
TCCCCAATCCAACTCCCTAT
na
na
SSR01056
AAAGGGAAAGGTAAATTGCCA
AGCAGTTCGGATGATATTGGA
na
na
SSR07120
GATCAAAAGATCCAACTAATAACCA
TCGTCCAAATAGTTGTTCTTACCA
na
na
SSR18311
GCGGATCAGAGAGGAAACAG
GAAACAAACGTCCTCCTCCA
na
na
SSR05328
TGCAGACTGTAAAATAAATGGTGA
CCGAGGCAGTAATCCAACAT
na
na
UW084838
GCAGCCTTATGCATTGTCTTT
GGTCCTCATCCCTTGTATTCTG
na
na
SSR11397
GAGGATGAAATAGTTGTCACTGAA
TGATGCCCAATAAAACCCTT
na
na
UW084840
NNACACGTAGTCAGAAAAACATATAAA
TTAAACAAACCCAAATCTTTTCTTC
na
na
UW084841
GACAAACATGTTAATCAGACACAAA
TTGGCGGAGGTTAATCACAT
na
na
SSR06031
TGGGAAGAGAACCCTAGGAAA
TTGCAATTACTCATCGCTGC
na
na
SSR23177
TGGATGAATGATGCCACAGT
CAAAAGCCTGTCTTGGTAAAAA
na
na
SSR30236
TCAATTAAACGAGTGGCAAAGA
GCCACGGGTTGACTACAAAT
na
na
SSR03066
CAAAACTTAAGGACCGAAAGGA
ACATGGTTGGTTAGTGGCCT
na
na
SSR06791
TTTGTAGTTTGAGAACTCAAGTTGG
TGGTGTTTGGTTGTCCTGAG
na
na
SSR10783
TGGGAAAATGGGAGTTTCAA
CGAACCACCAGTATTGGACC
na
na
SSR07209
CTGTCTGCAGAGCCATCTGA
CCATCAAGTTGAGGAGCAAA
na
na
SSR23549
TCACCCCCACTTTACTCCTC
AGTCAATCAGTCAGCGCCTT
na
na
UW084401
CTTCATTCCCCCTTCCAAAT
CGTCCATACATTGGGATCTTC
na
na
SSR14026
TACCGGAGAAATCATCGAGC
TCGCTAAACTCCAACACGAA
na
na
UW018193
CATGCGATTCAATTGTGAAAA
TGCAATTTGTCTCTTACACCTG
na
na
UW084415
TTCATTGAGTTTTACTAATGCCAAA
GTCGTCGAAGCATTTTGTGA
na
na
SSR00012
TCTCACCATGGTCACCTAATG
GGTCATTGAAGAGTCAAGTTGG
na
na
UW024693
TGAAAGAAAGATGGGGGAGA
TTCCCCCTCAAATATTGCTG
na
na
SSR05899
TAAGAGCAAAAATCCCACGC
AGCTCAATCAACGTCAAGAGAA
na
na
UW049135
TTATGAGGGGTCAGGTTGGA
AAAAGGGGAAGGGAATTGTG
na
na
SSR22706
CATAAGCCTTTCAAGCTGGG
CTGAGGTCTCCTGATGGAGG
na
na
UW058682
GGTGATGAGTTGGTTTTGTTCTT
GCCAAAATCGTGGCATAAGT
na
na
UW058714
CAAGGGTTGGCCTGTTTTTA
GGGGTGTGTGTGTGTGAGAG
na
na
UW083447
TGCTTGTGAAAGTCCTCGTG
CTTTTGCTTTGCATCCCAGT
na
na
SSR06225
TGTATCATTCCAATCCCTCCA
CGAAGTCCAAATTGATAAAGGC
na
na
SSR17389
AAGGACAAAGACAACATTAACAAAAA
GGGTTCTACGAAGGAGAGCA
na
na
SSR11043
AGGTACGAAACAACGGCAAT
TCGCACTCACTCTTTACCGA
na
na
SSR13456
ATGTGGGTGTGGAAAAATGG
TAAAGGGGCAATTTGGTGAA
na
na
UW084381
TGACACGCTACCTTGAATTCTG
AGGAACTGGAACTGCATGGT
na
na
SSR05415
GGGCATCATGACTAAATTCTCC
GTCTTCCTGGGTTAGTGGGG
na
na
SSR03481
TGTCTGTCCTTTTCCCTCCTT
AGAAACATGGTATGATATGTTGGA
na
na
UW084598
TACCTCCATGCTCCATCACA
TGGTGAAGTTAAAGGGTAAATCG
na
na
UW084449
TTTGTTTGTCGACCCAAAATAG
TCCTTTATACTTGAAACCAAAAAGAAC
na
na
SSR00276
CCAATTAATTATCCTCCCACGA
AATTAAAGTGAGGAGTGGAATTTTT
na
na
SSR03820
AGAGGGCAAATTGGTGAATG
TCCATCCTGTATGATTTGAGTTG
na
na
UW084372
GGCTCCATATGCCAAATGAC
TGGTGAAAACTCCATGGTTG
na
na
SSR05515
TCATTTTGGCTGCAATTCAA
GATTCTCCATCTCCACGCAT
na
na
11
ŞIĞVA et al. / Turk J Bot
UW084851
CCCAAATTACCTCATCAATTTTT
TTTTTGAAGGATTTTGGGTATG
na
na
SSR18549
GACACATCGCATTTTCCAGA
ATTAGGGGCTCCACAAAACA
na
na
UW084559
GGGGGAGATTGATAGTTGGAC
CGCCTGTTCTTTCAACCATT
na
na
UW084196
TATCACCGCTTTGGATTATT
CCCTTCCTCCTCATACTTTT
na
na
UW084295
GAGCAAGAACAGGAACAATC
ATAGATATGTGGGTGTGGGA
na
na
UW084212
GACAACTGATAACCCATGCT
TAATCATCCCCAACAATACC
na
na
UW084519
GGTAAGAGATGATCTTCGAAAGG
TTCCATTCATATTCTTCCAATGC
na
na
UW084691
GTTGTCGTCGAGGTCCCTAT
CTTTGCATGTAACGCCAAGT
na
na
SSR20165
CAATGGAGGAGGAGTTGGAG
GGGGCAGGGTAGAAGAAATC
na
na
UW084351
GAAACACAAAGTTAAAACAAAAATCC
GACATCACGACGTGGAACC
na
na
SSR07711
CCCAGGCATTTTCAAACACT
ATGGTTGGTCCATCTTGCAC
na
na
UW084461
GGCTACAGGGACATAAATACACTT
CGTTGTAATTACTTGGCCATCA
na
na
UW084654
GAAAACAGATTGATTGGTATCATTG
CAAAGCAAGAAGTTTGGAGGT
na
na
UW084852
TCCACTAAATTTAACTTGGTATCAAAA
CACTTGTGTGCAAGAAAATATTGAA
na
na
SSR10725
TGACCATCGGTGATAGAATTT
CAAACCAACTCAACCTTGATAGAA
na
na
SSR15321
TCAATGTAGGTAGAGCACCACG
TCCAATTGCTTGACCAATGA
na
na
UW083711
AGCCTTGGTGAAAAGGAAAT
GCCTACAATGACACACCAACC
na
na
UW002466
TGGAACCCAGAATCTAGCCTT
GCCTACAATGACACACCAACC
na
na
UW084357
AAAACAAAACATAGTAATTAAGCCTTC
TGAAATCTCTAGAAACAGGCGACA
na
na
SSR03529
TGAATTGAATAGACACAACAATATGC
ACATGTTGGGACTCCATGTG
na
na
SSR00772
AGAAGCGTTGGGGGAAAATA
TGCTACCTCACATGGTTTTG
na
na
SSR07100
CACACCATTTACGGTTATGGG
CATTTGGTTCAGAAAGGGGA
na
na
SSR14180
TGGCAACATTGTGAATTGTG
GAAGGGAGTACTGAGTTGCGA
na
na
UW084533
TTCCCTCTATCAACAATGTCCA
TTTCCTTCTAAAAATTGAACTATCACA
na
na
SSR10911
CAGTACCAAGTCCCTTCCCA
TGGGATCCTAACAACTCCATTT
na
na
SSR06303
AGCTCTCAACAACGAAGGGA
TGACTTTCTTGATGGTACCGC
na
na
SSR15196
CAAACTTTGTTCAAAATCTCACCA
AAAAGCAAACCTAGGGAGCA
na
na
UW084823
GGAAAGTGAAGAAGTAGGGTTTCA
GGGTTTCCGCTGTTTCTTC
na
na
SSR03514
TAGGGTCCCCTTCCCTCATA
GGGTACCCAAAAGCAAGTGA
na
na
SSR03943
TTTTTGGTGAAAAGGAACGTG
CACAAAGCAAAATTGAGGGAA
na
na
SSR10224
AAGTGAGTTGCAATGGCTGA
TCCATTGAGGTGATCTGAAAAA
na
na
SSR19343
ACCACGTGTATCTTCGCCTC
TCAAATGCATTGAAGGCTGT
na
na
UW084824
AAGATCACTGCCTCAATCTCGTAT
CTCACGTGCCGAGATTAAGAA
na
na
UW084820
AACCCTATGATTTAATTGGTTTTTC
ACAAAACGCCAAAGTGGTTC
na
na
SSR16163
CCAATATTTGCATATGGTTTATCA
CAATCTTTGCATTTTGCTTTTG
na
na
SSR11858
CCCTTCTCTCTCCTTCAATCC
GTTTGCATGGTGAAATGTGG
na
na
SSR11219
GCCATTCAAGGTGTAAGACCA
ATGTTGGTTGGGTTGGGTTA
na
na
SSR11343
GTGGGGTTGCTTTTGGATAA
CAATGGTTGCTTTGCTTCAA
na
na
SSR02764
CCAAGAACCACAAAAGTGGC
GTGAGGACGGAGATGAGAGC
na
na
SSR00019
ATTCTCGTGAACCATCACCC
ACTTTTGCCACTTGGCACTT
na
na
SSR14290
TGAAACAAAATTCGAGGTGTGA
TCACCACATTCTTTTTGGCA
na
na
SSR03940
GATTCTCCGGAAACGGATTT
GTCGTTTTCCGCGATTCTAC
na
na
SSR21318
GACACCCCATTCCTCATCAT
GCTTCATCACTCCCAATTCAG
na
na
SSR10954
TGCAAAACCAATTATTTGATATAGAGA
TTTCGGCAAAAGAACTAGGAG
na
na
12
ŞIĞVA et al. / Turk J Bot
SSR10829
TGTAATGCCACGTCACACCT
AAGCCAAAGGGGTTTGAAAT
na
na
SSR07248
CGATTGGAAAATATCGGCAC
CGAATCGCCTTCAGTTCTTT
na
na
SSR03768
GATGCTTGTGAAAACTGGGG
TTCCGTGGTTCAGTACCTTT
na
na
SSR13996
CAAATCTTAACCTTCTTTGCATCA
TTGAATCCAACTCAAACTCATTG
na
na
SSR18564
CCAACGTTCCATATCCACCT
AGTAGCCGACATGCATCAAA
na
na
UW084569
GATACAACCGCCGAGATCC
TGTATTCCAATGCACTGTTGG
na
na
UW039897
CCCAGTTCGTGACTTTTCGT
CCCAATTCTGTTTTCCTAATTGA
na
na
UW084428
GCCATGTTCACATGACCAAA
CCCATGGATTCTTGGATCTG
na
na
SSR00126
TCCACTCTTGACCAATTTTGAG
CACAAGAGGAAGCTATCGCA
na
na
SSR04252
AAAGAACACACATGGTGGTGG
AAGGAGTGTTTGAATAGGCCG
na
na
SSR11985
GCTGCATTTCATTTAACGCTT
TGGTCCATCCTCACCAATTT
na
na
SSR16005
CTCCACGAACCTTCCTTCAC
ATTGTTGGGCTTGGTTCAAT
na
na
SSR21885
AAGATTCAGGAGGAGGGGAA
AGTTCCACAAGGCACAGGTC
na
na
SSR19165
AATCCACGTTGGTTGTCGTT
GAAGGGCCAAAAATGTTTCA
na
na
SSR13741
TTTCGCCCATGAAATTCTTC
CAAAGAGGTTCACGTGGGTT
na
na
SSR10466
TGTTGTGAGCGGTTGTGATT
CTGATGCTCACACGTGTCCT
na
na
SSR21936
TTGGTTGGAAAAAGGAAGGTT
GGGCAGAGGCTTTTTCAATA
na
na
SSR01148
CGGAGAAAGGCTCAGAAACA
TGCACGCACATAAACTAGGG
na
na
SSR21561
TTGGAATCAAACAAAGAAAGAAA
GGCAAATTTTGGGTAGACGA
na
na
SSR00193
GCCAATCCAATGGAACAAGT
TTGTAAACCAAAACCTTACCCC
na
na
SSR19755
TATCAGCGAGGGAAGGAAGA
TAATTGCTGCATCGAAGACG
na
na
SSR19291
ATGGGAAGAAAAGTGGGACC
AGATTTCCTCCCCAATTTCG
na
na
UW084828
TGAAATGACCCTAAAATTAAGCA
TGTGTGTCTCCCAGTAGTGTTTG
na
na
SSR14861
ATTTCTTCCCCCACCAAAAC
ATGAATCCTCCTCCCAGAGC
na
na
SSR18771
GCACGTGGGTCAAAGAATTT
GTTGGTCAGCAAAAACGACA
na
na
UW084615
AAGGATTACATAAACCCTACCATGA
AAGCAAAAATTGGCTGCTTTA
na
na
SSR18133
CGATTTCAAACAAATTGCTAACTG
GGAGAGTCAAATCAAACATCCC
na
na
UW084364
CGGACGTTTTAGAGATTTTGC
AAGTACTCCATGAGGGGGAAA
na
na
SSR05271
GGTACAATAGGGAGGCCCAT
AGTGGGGGATGTAATGAAGG
na
na
UW085071
GGACTGAAATGCTATTTTCCA
CAAGTGTTGTGTGATTATGAAGC
na
na
SSR05682
TGAAGGTTTTTCTCCAGCGT
ATTCGCTCACTTCCGAAAAG
na
na
SSR20063
CCCACATTGGTCTCAACAAG
GCAGTTATATTTTGAGGGGAGA
na
na
SSR17062
AGCTAGCCACGTAACACCGT
CACTCTCAAAATTTAGCCACACA
na
na
UWSTS0125
TTGGCTAATTTATGGTTGGTATG
TCAAACTTCCTACCTCAACATTCA
na
na
UW084662
CACGGCTCTTATCGGTTAGT
CACTAGGTCGTTCAAAGCAA
na
na
51-6CAPS
CACACTCCTAAATTACGAAGTTGAAA
AGATTTTCAGCCTTCATTCCA
na
na
UW062953
ACCAAATCGCTTCTGAGGTT
GGCATGAAAGAAACACCGTT
na
na
51-14CAPS
CGTGAACTCAACAAATAAAAAGACG
AAACTGGGCAGCTAGAAAACA
na
na
UW084680
TGAGGCTTGATGGTTGTGTT
CTTTATGCTGGATGATCCCC
na
na
UW084975
CAATCCTCGTTCATCGACAC
GCCAACATCCACTTGTCAAC
na
na
CKX-indel
GAAACGGTTCCAGGTAAGCA
TCCCATTTCTTTATTTACTTCAGC
na
na
UW084979
CCTCACTGCCATTCTCTTCA
CATTGGCCATTGTGAAAAAG
na
na
UW084686
AAACACCTTCTTGGTCCTACG
GGACCCCTACCTAATGCTCA
na
na
UW084870
TTAATTTGGATTCGGCCTTC
AAAATGGGGTGAGTGAGGAG
na
na
13
ŞIĞVA et al. / Turk J Bot
UW084875
CAAAACTCCCAAGGGAAAAA
CATTCTTCTCGTCCCTCCAT
na
na
SSR18551
GATGTGCATGTGATCCAACAG
TGAATCTACTTGGGTTCGTTGTT
na
na
UW084189
GAATCATGGAAGATTGGAGA
TTTGGAAACACACAGATTCA
na
na
UW084033
GATATTTTTCCAACCTTCCC
TGTGTGATTTTCATTGCTGT
na
na
UW084716
GATCCATTCCCCTTTCTTCA
GAAAAGCATAGGACACGTCG
na
na
EC11
TCTTCGCAGTCACCATTTC
CCTTCCTCTGTTTCTGTTCC
na
na
EC12
TATTCTTCTTTGCTACCCAT
TAAGTTTATTTTCTGCTGTCTA
na
na
EC13
GCAATGAATCATGACCTCCA
CTGAGAATTGGGAAGGGACA
na
na
EC15
ACCAAAAACAGACCCCTATG
GAAAGGGAAAACAAACGAGG
na
na
EC18
TGCCATTTCATCGACTCTTC
GCATTTCTGCTGTGGCTTAG
na
na
EC19
TTTCTCTCCAACTCACCCTG
TACATCGGCTTTGCTCATCT
na
na
EC20
AAAGTTGCTCTTGTTTGTCC
GAGGTGAATGGTGGTGGCT
na
na
EC22
CAGCAGAGAAACTCAATCCA
CTGTTTACGGCTGCATTGGT
na
na
EC24
ACAACACAACCGCTTCTCGT
TGAGCCCAAGCACATAACAG
na
na
EC27
GTTGGAAGGCACACAAAGTC
CGAGATGATTGGAGGATGATG
na
na
EC28
CTGAGTTATGGGGAAAGCAA
TGTTAGTGATGTTGTTGGACC
na
na
EC31
CTAACCAGCAGAACCCAATG
GTATCCTGTTTCCAGCGAGA
na
na
EC34
GATCCCCATCATAATCACCC
CAAAGGGCTACAATAACAAAC
na
na
EC35
ATCCACAACACAAAAACCAC
AAGAAGAACAGCCAAGAATG
na
na
EC39
CCAAGTTTAAGTTATTTAGGAG
GAAGAGGACGATAAAGATGA
na
na
EC41
AGCATGTGGAGGAGAAAGCA
TTCATCATCGAGTGGGTCTG
na
na
EC47
CGATCTTTGTCATCCGACCT
AGAACGAGCACGTTTTGAGC
na
na
EC49
CGTGTTTTCTCAGATTTCCCA
CACTTCCCTTATCAACCCCA
na
na
EC50
GGAACAGGGAAATCCACCAT
TCGCTTCATCTCCCTCCTCC
na
na
EC52
TCAAACACGAACCCGAAACG
CAAGAAATTGCCAGGACGAG
na
na
EC56
TTTTTGGGGGTTTTTGAGAG
AGCTTTGTTCCCTATCTTCC
na
na
AB032936_2
TCTCAACCATTCCTAAGACGG
GTTGTGAGTTATGAGGAGATTG
na
na
CM1.15
ATTTCTTTTTCCTAATATTTAAC
GAGAACTAATTCGTATGGTTTA
na
na
CM1.41
TTCATTTCAGATCTGGCTCTCTG
AACAGCCTGAAAGTGAACCT
na
na
CM2.20
GATGATGGTTGAAGTTGGAGA
TCATCACCAAAATGTTCATTAAGC
na
na
EAACMCA
391-395STS
GAATTCAACCAAAAACCATAATCA
ATATCAGGTCAAATCTATAATCCC
na
na
EAAGMCAG
154STS
GAATTCAAGGGCAGTGGTGCAAC
TTAACAGAGTCTCCTCACCCTGATTT
na
na
EAAGMCA
280-282STS
AACACTCCTGCTTTAACAGCATC
AATGTAATCGTCATTCAGCAGTGT
na
na
EAAGMCTG
171-179STS
GAATTCAAGGTTATTTTCTCATCA
TTAACTGGCAAGCGTTCTTCTAAG
na
na
L18-2H19A
CCATCATAGTCAAATAAGAAATGA
GGTAGATATGTGTGCGCTATTTTG
na
na
MC224
GCTTGCTACTTAACGTTTG
GACATGCATAATGTGAGAAG
na
na
N6-1RTRANS
TCTATGATTTTCAACAATTGGAAG
GGTTTTCTTAAATAGAAGAACACC
na
na
CM01
TTGGAGGAGACAAAGGCATC
TGCTTCAACCTCTTCTTCTGG
na
na
CM04
CATGGCGATGTTTTCTTTCA
AAGGGAAAATTTTGGAAGTGG
na
na
CM05
TCCAACGAAATCCCACTGTT
AGCCGTTCTTCCGGATAGTT
na
na
CM07
TTTCCCGCATTGATTTTCTC
GAGAAACGCTTCCCACAAAC
na
na
CM09
GTCAAAAGCATCAGCAGCAA
CAAGTTAGGCAAACCCCAAA
na
na
14
ŞIĞVA et al. / Turk J Bot
CM15
ACCATCCTCCCTTCCAAATC
CAGAGAAGCAAGTGCAGCAG
na
na
CM16
TGCCTGTTGTGATTGAGGAG
TTCTTCTTACCTCCGCCAAA
na
na
CM17
CCTTCATCATCATCATCGTCA
GACCGGCAGTGGACATAGTT
na
na
CM21
CGGGGAATTTGTGCTCTATG
CCCAAACAAAGCCAAAAGAA
na
na
CM22
AAGGATTTGGTGGTGCTGAC
TTTCCATCTTGGGCTCCAAAC
na
na
CM23
TTCTTCATTTAGGGGCACTG
AAAGGGGGCTCAACATTTTT
na
na
CM26
CCCTCGAGAAACCAGCAGTA
CACCTCCGTTTTTCATCACC
na
na
CM28
GCCGCTGTAACGAATAATGG
GAAGAAAACAGGGCATCCAA
na
na
CM30
TCAAACCTAAACCCTAAACCTAACC
AGGATGATCGGGGAAGAAAT
na
na
CM33
TTGGCTTTTGGCTAATCTCC
TGAAGGGGTAAAAAGGTTAAAAA
na
na
CM38
TAGCATCTGATCGGAAAACC
CAACCTCATCCGCCAAGAAT
na
na
CM39
GATTTCCCCTCCGAACTCTC
TTGCCCTAAAACCCTCACAC
na
na
CM43
CTCTTCCAATCACCGCCTCT
AAGGAGGAGCATGAGGGAAT
na
na
CM46
GCTCCGGCAAACCTTTTTAT
GTGGACACGGTGATCACAAA
na
na
CM49
CCCCATCAGAAAGATGATGAA
TCTTTGTTTCTTCAATGGGGTA
na
na
CM53
CTGCCGTGAAGGAGAAGAAC
AGCCTCAATCCCCAATCTCT
na
na
CM55
CCTCTCTCTTTCCCCACCTC
GAAACAGAAGGAGCCACAGC
na
na
CMAGN33
CTGTCTGCTATTCTCCACTTGG
TGTATGCCACGTAGCGAAAC
na
na
CMAGN45
CCCACAAGAGAGAGAGAGAG
GTGTGACAGGTAGATTGTTGG
na
na
CMAGN52
CCACCAACATAACACACAAC
CTCTCACACTGTTGGGAAGA
na
na
CMAGN61
GGAGACACAAGGAATATGTG
ATAACAAAGGGGCATAACAC
na
na
CMAGN68
GGAAGGAAATTAGCATGCAC
GCCACTCTGTCTTTCTTCC
na
na
CMAGN73
ATCCAACTCGACCAAGAAAC
CAGCTCTACAACAACATCTC
na
na
CMAGN75
TGGGTTTTCTTCTACTACTG
TGCTTTTACTCTCATTCAAC
na
na
CMAGN79
CTTCACTAAAACTACAAGAG
TTCCAACTTATTCATCCCAC
na
na
CMAT141
AAGCACACCACCACCCGTAA
GTGAATGGTATGTTATCCTTG
na
na
CMAT35
GTGGGTCATCATTATTGTTA
GCTTTTAGCCTATTAAGTTGC
na
na
CMATN101
GCTTGTCTTTGTGTTTGC
GAGAACAAGACTCCTTAATCC
na
na
CMATN22
CGGCAATCATCTTATCTTTC
AAGATTGAAGTGGGAAAATG
na
na
CMATN89
CACTACCTTAAAACAGAATTG
GGACAATTTAGGGAGGATC
na
na
CMBR1
AGATGACCAAACCAAACCCA
CAACGTTATGGGGATGAAGG
na
na
CMBR10
CCGTTTGGATTCAGGCTAGA
ACCGGTTATCAAGGGTCCAT
na
na
15
16
X
X
X
E-GT
E-GC
E-CA
X
E-GG
X
E-AA
X
X
E-AT
E-AC
X
E-CT
X
X
E-CC
E-TC
X
E-TG
X
X
E-TA
E-TT
E-AAG
X
E-ACC
X
E-AG
X
E-ACC
X
X
X
E-AAG
E-CA
X
E-AAC
X
X
E-ACA
M-CG
E-CG
M-CAC
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
M-CAA
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
M-CCA
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
M-CAT
X
X
M-CG
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
M-CGT
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
M-CGA
X
X
X
X
M-CT
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
M-CTG
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
M-CTT
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
M-CGC
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
M-CGG
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
M-CTA
Supplementary Table 3. AFLP primer combinations used for AFLP screening of parental lines and F1, BR, and BS groups.
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
M-CCT
X
X
X
X
M-CC
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
M-CCG
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
M-CTC
X
X
X
X
M-CA
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
M-CAG
ŞIĞVA et al. / Turk J Bot
Download