Malzeme Bilgisi Prof. Dr. Akgün ALSARAN Atom ve moleküller arası Atomsal bağlar İçerik Atomlararası denge mesafesi Elastisite modülü Atomlar niçin bağ yapmak ister? İyonik bağ Kovalent bağ Metalik bağ Van der Waals bağ 2 Atomlararası denge mesafesi Atomlar birbirleri ile sürekli etkileşim içerisindedir. Bu etkileşimlerden biride atomlar arası itme ve çekme olaylarıdır. 3 Atomlararası denge mesafesi Nötr durumda protonlarla elektronların sayısı eşittir ve net elektriksel yük sıfırdır. Atomlar birbirine elektron vererek veya alarak yüklü duruma geçerler. Bu durumda Coloumb kuvveti doğar. dW Fdx x W Fdx 0 dW O K ' de........F 0 dx o DENGE 4 Atomlararası denge mesafesi Xo mesafesinin yeri sıcaklığa göre değişir. Sıcaklık artıkça xo artar. En küçük olduğu sıcaklık 0°K’dir. Çekme (kohezyon) kuvveti soğuk şekillendirme derecesini açıklar. Fa(x) =İtme kuvveti FT(x) =Toplam kuvvet Çekme kuvvetini değeri iyonlar arası mesafe x ile 1/x şeklinde değişirken, itme Kuvvet kuvveti Fr(x) =Çekme kuvveti 1/xm şeklinde değişir ki m=10’dur Dolayısıyla itme kuvveti iyonlar arası mesafe küçüldükçe, elektrostatik çekme kuvvetinden daha hızlı bir şekilde artar. 5 Atomlararası denge mesafesi Sonsuz mesafe uzaklıkta bulunan atomların birbirlerine karşı çekme ve itme gibi bir etkisi olmadığından potansiyel enerji sıfırdır. Herhangi bir etki ile bu atomlar birbirlerine yaklaştırılırsa, bu iki atom arasında bir çekme etkisi meydana gelecek ve kinetik enerji artarken potansiyel enerji azalacaktır. Aralarındaki mesafe azaldıkça, bu sefer itme kuvveti oluşacaktır. Öyle bir an gelir ki artık itme ve çekme kuvvetleri birbirlerine eşit yani bileşke kuvvet sıfır olduğunda atomlar denge haline gelir. İşte atomların denge halinde olduğu mesafeye atomlar arası denge mesafesi denir. Atomlar denge halin geldiklerinde aralarında çeşitli bağlar oluştururlar. Enerji diyagramında FT=0 hali dE/dr=0 haline karşılık gelir. Diğer bir ifade ile iki atomdan oluşan sistemin potansiyel enerjisi minimumdadır. Çekme, kimyasal ilginin fiziksel anlamı olup, kinetik enerji ile ilgilidir. İtme ise kısa mesafelerde kendini gösterir ve atomlar arası denge mesafesinin oluşmasını sağlar. 6 Atomlararası denge mesafesi Denge halinde potansiyel enerji minimumdur. Atomlar arası mesafe dolayısıyla potansiyel enerji çukuru; • Bağ türü ve enerjisine • Sıcaklığa…….0oK’de atomlar statik, potansiyel enerji minimum • Atomun hangi iyon halinde olduğuna…..ortalama çap değişir • Atomların diziliş şekli yani kristal sistemine bağlıdır…. Koordinasyon sayısı Dar ve derin enerji çukuru elastisite modülünün yüksek olduğu, elastisite modülünün yüksekliği de ergime sıcaklığını yüksek ve düşük genleşme katsayısı anlamına gelir. Dolayısıyla mukavemet yüksektir. Aksine geniş olan enerji çukurlarında ise, düşük ergime sıcaklığı, yüksek genleşme katsayısı ve düşük elastisite modülü görülür. 7 Elastisite modülü FN Uygulanan gerilme ve oluşan elastik şekil değiştirme (strain) arasında; = E. ilişkisi vardır ve E elastik modül olarak adlandırılır. Lo + dL A F E dFN/dr dFN r 0 dFN (a) dFN Repulsive F Attractive Solid ro dr (b) Fig. 1.14: (a) Applied forces F strech the solid elastically from Lo to d L . The force is divided amongst chains of atoms that make the solid. Each chain carriers a force d FN. (b) In equilibrium, the applied force is balanced by the net force d FN between the atoms as a result of their increased separation. From Principles of Electronic Materials and Devices, Second Edition, S.O. Kasap (© McGraw-Hill, 2002) http://Materials.Usask.Ca 8 Elastisite modülü Uygulanan gerilme ile kuvvet doğrultusunda uzaklaşan atomlar, şekildeki gibi geri çağırıcı kuvvetin etkisinde kalır. dr yer değiştirmesi ile ortaya çıkan dFN kuvveti sistemi eski haline döndürmeye çalışan kuvvettir. dFN 2 0 r E dr r0 E, Elastisite modülünün FN kuvvetinin r=ro’daki değişimi ile orantılı olduğu görünmektedir veya Enerjinin ro’daki eğriliği ile orantılıdır. 2 1 dFN 1 d Ebağ E ro dr r r0 r0 dr 2 r r 0 9 Elastisite modülü E f Ebağ 3 0 r Yaklaşık ifadesi ile Elastisite modülü ile bağ enerjisi arasındaki ilişki verilmektedir. Büyük bağ enerjisine sahip katıların büyük elastik modülüne sahip olacakları görülmektedir. İkincil tür bağlar için bağ enerjisinin küçüklüğü ile Elastisite modülüde küçük olacaktır. 10 Atomsal bağlar Kimyasal bağ, iki ve daha fazla atomum yeni bir madde oluşturmak için birleşmesidir. İki veya daha çok atom çekirdeğinin elektronlarına yaptıkları çekme kuvvetlerine “Birincil bağ (iyonik ; σ, π, ∆ kovalent ve metalik bağlar) ”, moleküller arasındaki etkileşimden doğan bağa da “İkincil bağlar (van der waals)” denir. Birincil bağların oluşması için atomlar arasındaki itme ve çekme kuvvetlerinin birbirine eşit olması, yani minimum potansiyel enerjinin sağlanması gerekir. 11 Atomlar niçin bağ yapmak ister? Atomlar daha karalı bir hale gelebilmek için ya elektron alırlar, ya verirler yada ortak kullanılırlar. Yani soy gazlara benzemek isterler. Elektron nokta diyagramı, Lewis yapılar 12 Levis yapılar • Noktalar Valans elektronlarını gösterir. • Atomların ne çeşit bağla bağlanacaklarını valans elektronları belirler. Valans elektron sayısı periyodik cetveldeki konumdan belirlenir. • Valans elektronlarını göstermek için Lewis diyagramı kullanılır. Bu diyagramda elementin ismi ve çevresinde en dış enerji seviyesindeki valans elektronlarını gösterir. Atomların Lewis yapıları Atom için kimyasal simge valans elektron sayısına karşılık gelen noktaların sayısı ile çevrilidir. Valans elektronları, kimyasal reaksiyonlar süresince kendi atomunu terk edebilecek ara tabakasını tam doldurmamış elektronlardır. Yani son kabuktaki elektronlar 13 Atomsal bağlar Bağ çeşitleri Metal-metal olmayan (İyonik bağ) Metal olmayan-metal olmayan (Kovalent bağ) Metal-metal (Metalik bağ) 14 İyonik bağ • Metal ve ametal arasında görülür. • Elektron alışveriş esasına dayanır. • Son yörüngesi elektron dengesi bakımından dengesiz, elektron ilgisi düşük (elektropozitif) bir metal ile son yörüngesini elektronla doldurma isteğinde olan yani elektron ilgisi yüksek olan (elektronegatif) bir ametal arasında mevcut elektronların alış verişiyle kararlı bir yapı oluşturulması söz konusudur. Sonuç olarak iyon bağın oluşabilmesi için iki atomun elektronegativite değerleri arasında çok fark olmalıdır. • Oluşan iyonik yapıda, elektron veren atom + iyon haline, elektron alan da – iyon haline geçerler. Bağ kuvveti bu iyonlar arasında ki elektrostatik çekmeden doğar. 15 İyonik bağ • Oluşan iyonik bağ simetrik (elektron dağılımı homojen) bir yapı gösterir. Dolayısıyla bağda açı oluşumu söz konusudur. Simetriklikten uzaklaştıkça kovalent bağ oluşma eğilim artar. • Katı halde iyon bileşikleri elektriği çok az iletirken, ergimiş halde elektrik akımını iyi iletirler. 16 İyonik bağ • İyon bileşiklerinin ergime ve kaynama noktaları çok yüksektir. • İyon bileşikleri düzenli kristal yapıdadırlar. • İyon kristalleri kırılgan yapı sergilerler. • İyon kristalleri saydam olup ışığı kırmazlar. • Örnek : NaCl , LiF 17 6 Cl 0 - -6 -6.3 Cl - r= + Na 1.5 eV 0.28 nm Cohesive energy Potential energy E(r), eV/(ion-pair) İyonik bağ Cl r= Separation, r Na + Na ro = 0.28 nm 18 Kovalent bağ • Elektron alışverişi söz konusu olmayıp elektron ortaklaşmasına ya da girişimine dayanır. Atomlar son yörüngelerindeki valans elektronlarını ortaklaşa kullanarak güçlü bağ oluştururlar. • Özellikle N, O, H, F ve Cl gibi ametal atomları arasında görülür. Si, Ge, Sb ve Se gibi metaller arasında da kısmen kovalent bağ da oluşur. 3B-7B arasındaki geçiş elementleri arasında da kısmen kovalent bağlı bileşikler oluşabilir. • Kovalent bağın oluşabilmesi için son kabuktaki orbitallerde en az bir elektron boşluğu olması gerekir. - + - + Elektromanyetik alan Dönme (spin) H2 molekülü ve elektronların spinleri 19 Kovalent bağ • Bu şekilde bağlanan bileşikleri oluşturan atomlar arasındaki elektronegativite farkı düşüktür. Bu fark arttıkça iyonik özellik artar. • Bu bağlar açılı yani ayrıktırlar, dolayısıyla elektron dağılımı asimetriktir. • 6. Bağı oluşturan atomların aynı olup olmadıklarına göre Apolar (genelde aynı cins atomlar arasında) ve Polar (farklı cins atomlar arasında) ikiye ayrılırlar. Son yörüngedeki elektronların hangi tür orbitalden bağ oluşturmasına göre de σ (s-s ve s-p arasında), π (p-p arasında), ∆ (d orbitalleri arasında) + H CH4 H 109.5 ° H C H + + 120° F F B F 20 Kovalent bağ • Bir elementteki kovalent bağ sayısı 8 - Grup No değerine eşittir. • Kovalent bağlı bileşikler hem katı hem de sıvı halde elektriği iyi iletmezler. Çok atom Soru: Kovalent bağlı yarı iletkenler (Si, Ge, Sn gibi) elektriği iyi iletir neden? Kovalent ve iyonik bağ yapma eğilimin, belirlemek zordur. Bir çok katı her iki bağıda yapabilirler. Genellikle dış yörüngeleri hemen hemen dolu olan elementlerin bileşikleri iyonik, yarı yarıya dolu olanlar ise kovalent bağ yapma eğilimindedirler. 21 Metalik bağ • Metal atomları arasında görülür. • Metalik bağda da kovalent bağda olduğu gibi atomların birbirlerine yaklaşarak enerjilerini düşürme eğilimi vardır. • Kovalent bağ iki atom arasında gerçekleşebilirken, metalik bağ çok sayıda atom arasında gerçekleşir. • Bağlanmada serbest elektron ya da delokalize elektronların pozitif çekirdekler arasında bir elektron denizi oluşturmaları ve bu elektron denizininin pozitif çekirdekler tarafından ortak olarak paylaşmaları söz konusudur. Elektron denizi pozitif çekirdekleri birarada tutmaktadır. Hiçbir elektron bağı oluşturan herhangi bir metal atomuna aittir denilemez. Bir atom her taraftan eşit kuvvetlerin etkisi altındadır. • Metalik bağlarda yönlenme söz konusu değildir. 22 Metalik bağ • Metallerde elektronların serbest kalma özellikleri nedeniyle çekirdek yükleri de azalmıştır. Bu nedenle elektronların serbestçe hareket etmeleri kolaydır. Ayrıca bu elektronların son kabuktan ayrılmış olmaları dalga boylarının yükselmesi ve frekanslarının da azalması anlamına gelir ki bu da kinetik enerjilerininde düşme demektir. Elektronların metal içerisinde çok serbest hareket etmeleri yapı içerisindeki potansiyel farkların da minimum olması anlamına gelir, yani potansiyel enerjide düşüktür. O halde metalik bağlarda elektronların kinetik ve potansiyel enerjileri de düşüktür. 23 Metalik bağ • Elektriksel anlamda çekirdek cazibesinden nispeten uzaklaşmış serbest elektronların herhangi bir elektriksel, mekanik ve ısı enerjisiyle tahrik edilmesi halinde birbirlerini itmesi de elektriksel ve ısıl iletkenlik ve şekillendirilebilirlik anlamında elektronların birbirlerini itmesi ile gerçekleşir. Metal deformasyonunun sebebi Dış kuvvet Deforme olmuş metal 24 Metalik bağ • Atomların valans elektronları ne kadar az ise, bu elektronların serbest kalma ihtimali o kadar fazladır, dolayısıyla elektriksel ve ısıl iletkenlik artar. İşlenebilirlikleri iyidir. Valans elektron sayısı arttıkça kovalent bağ yapma ihtimali ve çekirdek yükü artar. Bu nedenle valans elektron sayısı yüksek olan Fe, Ni, W ve Ti gibi elementlerin atomlarının yaptıkları metalik bağlanmalar sonucunda bu metallerin ergime dereceleri yüksek olmaktadır, yani kısmen kovalent özellik göstererek yönlenmeleri söz konusu olabilir. 25 Van der Waals bağ • Moleküller arası olan ikincil bağlardır. • Elektronik kutuplaşmaya dayanır. • Dış yörüngesi tam dolmuş soygazlar ya da tam dolmamış element atomlarının, kovalent iyonik bağlı bileşiklerin kendi aralarında oluşan kutuplaşmalardan çekme etkisi olur. + - + - Dipol oluşumu Ar atomları sıvılaşma sıcaklığında 26 Van der Waals bağ • Bu çekme son yörüngesi tam dolu olan soygazlarda ve simetrik moleküllerde geçici kutuplaşma ile gerçekleşir. Herhangi bir etki neticesinde elektronların konumlarını değiştirmesiyle, salınımlarıyla ani kutuplaşmalar olur. • Bu çekme özellikle kovalent bağlı bileşiklerde yönlülükten kaynaklanan asimetrik yük dağılımından (molekül kutuplaşması) dolayıdır. Bu nedenle elektronların hareketi, titreşim vs. gibi sebeplerle salınım yapar, yani dipoller (kutuplaşmalar) meydana gelir. Bir bölgede çok küçük zaman dilimlerinde elektron yük dağılımı değişir. Yani potansiyel enerji değişir. Bu potansiyel enerjinin minumum edilmesi adına van der Waals bağları oluşur. • Molekül kutuplaşması ile oluşan van der Waals bağları geçici kutuplaşma ile oluşan van der Waals bağlarından güçlüdür. • Örnek : H2O (molekül kutuplaşması) , sıvı azot (geçici kutuplaşma) 27 Van der Waals bağ H H H2 28 Bağ türünün etkileri • Ergime ve buharlaşma sıcaklığı: Katı halden sıvı hale geçerken kuvvetli, sıvıdan buhara geçerken zayıf bağlar kopar. Bağ enerjisi arttıkça ergime sıcaklığı artar. • Isıl genleşme: Ergime sıcaklığı ile ters orantılı gelişir. • Mukavemet • Elastisite modülü • Isıl iletkenlik: Serbest elektron hareketi ile ilişkilidir. İyonik ve kovalent bağlılarda ısı enerjisi yalnızca atomların ısıl titreşimleri ile olur. • Optik özellikler: Metallerde ışık dalgası serbest elektron bulutu ile yansıtıldığından geçmez. Bu nedenle metaller saydam değildir. Kovalent ve iyoniklerde ise serbest elektron olmadığından ışık yansıtılmadan geçer. Yapıda kusur varsa? • Kimyasal özellikler: Metalik bağlılarda valans elektronları kolayca yapıdan ayrılır ve artı yüklü iyonlar kalır. Bu iyonlarda çevrenin elektro-kimyasal etkilerine karşı duyarlı olur. 29