Elektrokimyasal Prosesler

advertisement
Elektrokimyasal Prosesler
KMM 497
Doç.Dr. Atıf KOCA
Kimya Mühendisliği Bölümü
Elektrokimyasal Prosesler
Sanayide; Kimyasal proseslerin
Seçiciliğin artırılması
Karışımların ayrıştırılması
 Atıklardaki kimyasalların geri kazanımı
Toksik atıkların elimine edilmesi gibi
proseslerin iyileştirilmesi için yeni teknolojilere ihtiyaç duyulmaktadır;
Çözüm: Modern elektrokimyasal teknolojiler
Elektrokimyasal Proseslerin Ticari Kullanımı
+ eElektroliz
NaOH + H2
Cl2
OH-
eCl-
e-
Na+
KATOT
ANOT
Katyon Değiştirici
Membran
1/2 Cl2 (g) + e-
H 2 O + e-
1/2 H2 (g) + OH-
NaCl
Klor-Alkali prosesi
Elektrokimyasal Proseslerin Ticari Kullanımı









Inorganik kimyasalların üretimi: Cl2/NaOH, KOH,
ClO3-, ClO2-, BrO3-, H2, O2, F2, O3, gibi.
Organik kimyasalların üretimi: Monomerler, fine
chemicals, farmasötikler, zirai kimyasallar.
Metal Ekstraksiyonu: Al, Na, K, Mg, Li, Cu, Zn, Ga.
Atıkların geri kazanımı:
Kimyasal saflaştırma ve ayırma:
Su ve atık iyileştirme:
Toksiklerin iyileştirilmesi:
Toprak ıslahı:
Atmosfer kontrolü:
Elektrokimyasal Proseslerin Ticari Kullanımı






Metal Ġşleme: elektrokaplama, elektroboyama, yüzey
iyileştirmesi
Elektronik Devrelerin Üretimi:
Metal Üretimi :
Korozyon Konyrolü:
Pil, akü, batarya, yakıt pilleri:
Sensörler:
Elektrokimyasal Proseslerin Ticari Kullanımı
Özellikle; atık dönüşümü ürün izolasyonu(ayırma) su ve
atık iyileştirmesi proseslerinde;









Atıklardan ağır geçiş metallerinin uzaklaştırılması:<< 1 ppm. !
Atıklardan organik maddelerin uzaklaştırılması:< 10 ppm. !
Sudan tuz uzaklaştırılması: < 200 ppm
Seçici iyon uzaklaştırılması: NO3Kaplama atık sularından geçiş metallerinin eldesi
Atık sulardan asit ve baz üretimi
Deniz suyundan NaCl eldesi
Kimyasal atıklardan organik asitlerin uzaklaştırılması
Atık iyileştirmesi ile ClO-, H2O2, ve O3 üretimi
Elektrokimyasal Proseslerin Sanayide
Kullanımındaki Sorunlar
Sanayide kullanılan kimyasal prosesler ile ilgili karşılaşılan
uygun
elektrokimyasal
bir
prosesle
çözülebilecek
problemlerin birçoğu;
Ar&Ge (R&D) programlarının eksikliği
Veya
Elektrokimyasal teknolojiler hakkında yetersiz bilgi ve
deneyim eksikliğinden kaynaklanmaktadır!!!!!
Elektrokimya
Elektrokimyasal Prosesler;
– Enerji üretmek: Kendiliğinden gerçekleşen redoks reaksiyonlardan
faydalanarak ( K > 1)
VEYA
– Kimyasal Üretmek: Enerji kullanarak kendiliğinden gerçekleşmeyen
reaksiyonları gerçekleştirmek (K<1)
Bütün elektrokimyasal prosesler yükseltgenme ve indirgenme
reaksiyonlarının bir arada gerçekleştiği reaksiyonlardan oluşur
Yükseltgenme – Indirgenme Reaksiyonları
Yükseltgenme …
– Elektron veren
– Oksidasyon kademesinin
artan
– Oksijen eklenen
– Hidrojen kaybeden
2 Mg + O2  2 MgO
İndirgenme…
– Elektron alan
– Oksidasyon kademesinin
azalan
– Oksijen kaybeden eklenen
– Hidrojen eklenen
MgO + H2  Mg + H2O
Redoks Reaksiyonların Belirlenmesi
Bir elektrokimyasal reaksiyonda; yükseltgenme ve indirgenme
reaksiyonları birlikte gerçekleşir.
Bir kimyasal reaksiyonda türlerin oksidasyon kademesinde bir
değişme varsa, bu reaksiyon bir redoks reaksiyondur:
2 Fe3+ + 2 I-
2 H2O
2 AgNO3 + Cu
HCl + AgNO3
2 Fe2+ + I2
2 H2 + O2
2 Ag + Cu(NO3)2
AgCl + HNO3

Yükseltgen;
– Diğer türleri yükseltgerken kendisi indirgenen tür.

Ġndirgen;
– Diğer türleri indirgerken kendisi yükseltgenen tür.
5 Fe2+ + MnO4- + 8 H+
H2 + CuO
Zn + 2 HCl
5 Fe3+ + Mn2+ + 4 H2O
Cu + H2O
ZnCl2 + H2
Redoks Reaksiyonların Denkleştirilmesi;

İndirgenme ve yükseltgenme yarı reaksiyonlarına ayırma
Her Bir Yarı Reaksiyon için;

H ve O hariç diğer elementlerin denkleştirilmesi

“O’ denkleştirmek için, H2O (asidik) veya OH- (bazik) eklemek

“H’ denkleştirmek için, H+ eklemek,

Yük denkliği için, e- eklemek

Her iki yarı reaksiyondaki e- sayısını eşitlemek

Yarı reaksiyonları toplamak.
Örnek Fe2+ + Cr2O72-  Fe3+ + Cr3+
Fe2+  Fe3+
Cr2O72-  Cr3+
Fe2+ Fe3+ + e-
Cr2O72-  2 Cr3+
6 Fe2+ Fe3+ + 6 e-
Cr2O72-  2 Cr3+ + 7 H2O
Cr2O72- + 14 H+  2 Cr3+ + 7 H2O
Cr2O72- + 14 H+ + 6 e-  2 Cr3+ + 7 H2O
Cr2O72- + 6 Fe2+ + 14 H+  2 Cr3+ + 6 Fe3+ + 7 H2O

Asidik çözeltide denkleştirme;
H2C2O4 + MnO4-  Mn2+ + CO2

Bazik çözeltide denkleştirme; :
CN- + MnO4-  CNO- + MnO2
Mavi renkli CuSO4 çözeltisine metalik Zn eklendiğinde ne
olur?
Fiziksel Değişim;
 ……
Zn (k) + CuSO4 (suda)  ZnSO4 (suda) + Cu (k)
Kimyasal Değişim;
 ……
Enerji;

……
Zn (s) + Cu2+ (aq)  Zn2+ (aq) + Cu (s)
Kimyasal Enerji – Elektrik enerjisi
Zn  Zn2+ + 2 eCu2+ + 2 e-  Cu




(yükseltgenme)
(indirgenme)
Zn ve Cu2+ bir araya geldiğinde, Zn den Cu2+ elektronlar
kendiliğinden transfer olur;
Fakat kendiliğinden olan bu reaksiyondan bir iş elde
edilememiştir;
Açığa çıkan kimyasal enerji ısı olarak çözeltiye verilir;
Bu kimyasal enerjiden elektrik enerjisi nasıl elde
edebiliriz?????????????
Galvanik Piller
Kendiliğinden gerşekleşen redoks reaksiyonlardan elektrik
enerjisi elde etmek için dizayn edilen sistemler;
Pil Potansiyeli & Elektromotor Kuvveti; Epil
Yarı
Epil
pil potansiyellerinin farkı;
=Ekind. – Eaind.
Ekind. =
katot yarı pil potansiyeli
Eaind =
anot yarı pil potansiyeli
Yarı pil potansiyellerinin gerçek değerini ölçmek
mümkün değildir.!!!!!!!
Standart Hidrojen Elektrot (SHE)

Tek bir elektrodun potansiyelini
ölçmek mümkün değildir.

Bir potansiyostat ile, İki
elektrot arasındaki potansiyel
farkını ölçmek mümkündür.

Standart hidrojen elektrodun
indirgenme potansiyeli KEYFĠ
olarak bütün sıcaklıklarda 0
kabul edilmiştir.

Herhangi bir elektrodun
potansiyeli; SHE ile oluşturulan
pil potansiyeli kullanılarak
hesaplanır.
2 H+ + 2 e-  H2
E° = 0 V




E cell = + 0.76 V
+ = pil kurulduğu şekliyle kendiliğinden çalışabilmekte.
Zn
Zn2+ + 2 ereaksiyonu için yükseltgenme potansiyeli
E°SHE= 0 V, olduğu için E cell = EZn = + 0.76 V .
E oZn 2 / Zn   0.76 V
Standart İndirgenme Potansiyelleri
Standart Pil Potansiyelinin Hesaplanması
1.
2.
3.
Anot ve katodun
belirlenmesi
Yarı reaksiyonların
yazılması
Standart pil
potansiyelinin
E°pil = E°indkatot - E°indanot
denklemi kullanılarak
hesaplanması
E°(Cu2+/Cu)>E°(Zn2+/Zn)
Cu katot ve Zn anot
Katot reaksiyonu: Cu2+ + 2e-  Cu E°(Cu2+/Cu) = +0.34 V
Anot reaksiyonu: Zn  Zn2+ + 2 eE°(Zn2+/Zn) = -0.76 V
Pil reaksiyonu:
Zn + Cu2+  Zn2+ + Cu
E opil  E oCu2 / Cu  E oZn 2 / Zn  0,34  0,76 1,10 V
Cu
Zn
Pil Şeması
-Zn | Zn2+ (1.0 M) || Cu2+ (1.0 M) | Cu+
 ANOT - ; KATOT +
 ANOT solda; KATOT sağda
 Konsantrasyonlar parantez içinde verilir
 | faz farkını ifade ederA vertical line represents a phase boundary
 || tuz köprüsü
Pil Şeması; ÖRNEK

Aşağıda şeması verilen pilin pil potansiyelini hesaplayınız:
Mg | Mg2+ (1.0 M) || Ag+ (1.0 M) | Ag
E oMg 2 / Mg  2,37 V
E oAg / Ag  0,80 V
Aşağıdaki reaksiyon kendiliğinden gerçekleşirmi ? (istemlimi?)
[Fe2+] = 0.60 M ve [Cd2+] = 0.010 M ?
Fe2+ (aq) + Cd (s)
Fe (s) + Cd2+ (aq)
E oFe2 / Fe   0.44 V
E oCd2 / Cd   0.40 V
19.5
Redoks Reaksiyonların İstemliliği (Spontaneity)
Go = - n F Eo
Faraday
n = transfer edilen elektron sayısı Michael
(1791-1867)
Faraday sabiti F = 96,500 C/mol e-
1F = 1 mol e-, 1 mol elektronun yükü 96,500
C/mol e Go = (mol e-)(C/mol e-)(V) = (mol e)(C/mol e-)(J/C) = J

Pil Potansiyeline (Ecell) Konsantrasyonun Etkisi
Nernst Denklemi:
 G =  Go + RT ln Q ve
(R = 8.314 J/(mol•K))
 Go = - n F Eo
- n F E = - n F Eº + RT ln Q
RT
EE 
ln Q
nF
0
Walther Nernst
(1864-1941)
Dengede,  G = 0
RT
E 
ln K
nF
0
0.0591
E 
log K
n
0
Go = - n F Eo
Go
K
Eocell
Reaksiyon
-
>1
+
istemli
0
1
0
denge
+
<1
-
istemsiz
Termodinamik Büyüklükler:
Denge
konsantrasyonları
nın belirlenmesi
pil
pil
pil
Kalorimetre ve Entropi:
S0 ve S0
Potansiyel Ölçümü:
E0 ve E0cell
Nernst Denklemi

Aşağıdaki reaksiyonun pil potansiyelini (Epil ) hesaplayınız
- Mg | Mg2+ (0.0050 M) || Ag+ (2.0 M) | Ag +
E oMg 2 / Mg  2,37 V
E oAg / Ag  0,80 V
Nernst Denklemi

Aşağıdaki reaksiyonun Denge sabitini hesaplayınız
- Mg | Mg2+ (0.0050 M) || Ag+ (2.0 M) | Ag +
E o 2
 2,37 V
E o   0,80 V
Mg
/ Mg
Ag / Ag
Elektrot Türleri






Metal-Metal iyonu
Ag | Ag+ (M1)
Ametal- Ametal iyonu
Pt, H2 (p) | H+ (M1)
Metal,-çözünmeyen tuzu
Ag, AgCl(k) | KCl (M1)
Amalgam Elektrot
Ag (Hg) (M) | Ag+ (M1)
Redox Elektrot
Pt | Fe2+ (M1), Fe3+ (M1)
Referans elektrot (SCE)
Hg | Hg2Cl2, KCl(doy) (potansiyeli sabit)

Aşağıda şeması verilen pilin pil potansiyelini hesaplayınız
Pt|Cr2O72- (0,20 M), Cr3+ (0,10 M), H+ (0,001 M) ||KCl(doy) , Hg2Cl2 | Hg

Aşağıda reaksiyonu verilen pillerin pil potansiyelini hesaplayınız
Ag+ (0,1 M) + Cd (s)
Ag (s) + Cd2+ (0,2 M)
H2 (1,0 atm, g) + Ag+ (0,2 M)
H2 (0,1 atm, g) + Cl2 (1,0 atm, g)
H2 (0,1 atm, g) + AgCl (k)
Ag (s) + H+ (0,1 M)
HCl (0,1 M)
Ag (s) + HCl (0,2 M)
Konsantrasyon Pilleri

Elektrolit Konsantrasyon Pilleri
- Ag | Ag+ (M1) || Ag+ (M2) | Ag +

Elektrolit Konsantrasyon Pilleri

- Ag (Hg) (M1(Ag)) | Ag+ (M) | (M2(Ag)) Ag (Hg) +
Problem:
E oHg 2 / Hg 2  0,920 V
2
Olduğuna göre
E oHg 2 / Hg  ?
ve E oHg 2 / Hg  0,789 V
2
Electrolitik Piller
yükseltgenme
H2O → O2(g) + 4 H+ + 2 e–
E° = -1.23 V
ve
indirgenme
2 H+ + 2 e– → H2 (g)
E° = 0.00 V
Net reaksiyon
2 H2O + 4 e– → H2(g) + O2(g)
E° = -1.23 V
!!!!!!!! Elektroliz !!!!!!
Sulu sodyum klorür çözeltisinin elektrolizi


Olası katot reaksiyonları:
2 H2O + 2 e-  H2 +2OHNa+ + e-  Na
Olası katot reaksiyonları :
2 Cl-  Cl2 + 2 e2 H2O  O2 + 4 H+ + 4 e-
E° = -0.83 V
E° = -2.71 V
E° = -1.36 V
E° = -1.23 V
Net pil reaksiyon:…………………………………..
Sodyum klorür eriyiğinin elektrolizi
Anot:
Catot:
net:
2 Cl- ()  Cl2 (g) + 2 e2 Na+ () + 2 e-  Na()
2 Cl- () 2 Na+ ()  Cl2 (g) + Na()
Elektroliz Prosesleri
Faraday Yasası 
•
•
•
Metal kaplama
Metal saflaştırma
Metal üretimi
Elektrokaplama Hücresi
I
V
catot
CuSO4 çözeltisi
anot
Pt elektrot:
2 H2O –>
O2 + 4H+ + 4e-
“yükseltgenme"
“indirgenme"
Cu2+ + 2e- –> Cu(0)
Cu(0) –> Cu2+ + 2e-
Quantitative Elektroliz
1 F = 96467 C
A i.t
m x
n F
25x50x0
cm ebatlarındaki bir demir şerit bakır ile kaplanmak isteniyor. 0.15
i/dm2 akım yoğunluğunda 2 mikrometreCu kaplamak için ne kadar süreyle
elektroliz yapılmalıdır (dCu=7.8 g/cm3.)
0.452 A alım geçirilerek 1.5 saat süreyle gercekleştirilen NaCl eriyiğinin
elektrolizde anot ve katot ürünlerinin öiktarlarını hesaplayınız.
Metal ayırma prosesleri
Ag+, Cu2+, H+, ve Pb2+ iyonlarının 1 M lık çözeltisinin elektrolizinde anot
ve katotta gerçekleşen olayları sıralayınız .
Ag+ + e-  Ag
E oAg  / Ag  0.80 V
2H+ + 2e-  H2
E oH  / H  0.00 V
2
Cu2+ + 2e-  Cu
E oCu2 / Cu  0.34 V
Pb2+ + 2e-  Pb
E oPb2 / Pb   0.126 V
Aşırı gerilim dikkate alınmaz ise
Ag+, Cu2+, H+, ve Pb2+ sırayla 0.799 V; 0.337 V; 0.000
V; -0.126 V yarı pil potansiyellerinde katotta
indigenirler !!!!!!!!!!!!!!!!!!!
0.799
E oAg  / Ag
Aşırı gerilim sırayı değiştirebilir;
Cu (H)  0.60 V
 Pb (H)  1.56 V
E d (anot )  E rev (anot )  
0.337
E oCu2 / Cu
o 0.000
E H / H
2
-0.126
E oPb2  / Pb
E d (katot )  E rev (katot )  
E d (H)Cu  E rev H   Ag (H)
E d (H)Cu  0  0.60   0.60 V
E d (H)Pb  E rev H   Pb (H)
E d (H)Pb  0 1.56  1.56 V
Polarizasyon
Elektrokimyasal bir pilden akım geçtiği zaman; pil potansiyeli anot ve
katotun yarı pil potansiyellerinin farkına eşit değildir.
ECell=Ecathode-Eanode-IR + 
IR düşüşü ve polarizasyondan dolayı;
Elektrolitik hücreyi çalıştırmak için daha fazla potansiyel uygulamak
gerekir.
Ve
Galvanik gücrede de daha az potansiyel elde edilir.
Polarizasyonun sebepleri:
Elektrot yüzeyinde gerçekleşen reaksiyonun sınırlanmasın dan
kaynaklanmaktadır.




Kütle transferi
konsantrasyon
Ara ürünler
Adsorpsiyon, desorpsiyon ve kristalizasyon gibi
Polarizasyon
 Konsantrasyon Polarizasyonu
reaktiflerin elektrot yüzeyine yeterince
hızlı taşınmaması veya ürünlerin yeterince
hızlı uzaklaşmamasından dolayı elektron
transfer hızını karşılayacak yeterli akım
taşınamamaktadır.
Difüzyon:
Migrasyon:
Konveksiyon:

Kinetik Polarizasyon:
Elektrokimyasal reaksiyonların Mekanizması
elektrot
Elektrot-çözelti arayüzeyi
Oyüzey
Bulk çözelti
Kütle transferi
O’yüzey
Elektron transferi
O’ ads.
Kütle transferi
Obulk
Cu|Cu2+ (0,10 M) || Cd2+ (0,10 M) | Cd
pilinin iç direnci 4,0  dur.
a) 0,020 A akım geçmesi için uygulanması gereken pil potansiyelini
bulunuz. (elektrolitik pil)
b) 0,020 A akım geçmesi için uygulanması gereken pil potansiyelini
bulunuz. (galvanik pil)
Elektrolitik bir pilde bulunan iyonların konsantrasyonları: [Ag+]=0.1 M,
[Pb2+]=0,02 M, [Cd2+]=0,01 M, [Zn2+]=0,05 M, ve pH =3
a) elektrotlarda ayçma sırasına göre sıralayınız.
b) elektrolizin başlangıç potansiyelini bulunuz.
 (H): Ag = 0,2, Pb = 0,4, Cd = 0,22 ve Zn = 0.7 V
 (O) Pt= 0.66 V
0.1 M Cu2+ yi 0.1 M Zn2+ iyonundan ayırmak mümkünmüdür?
Eo Cu2+/Cu = 0.337 V; Eo Zn2+/Zn = -0.763 V;
0.1 M Cu2+ yi 0.1 M Zn2+ iyonundan ayırmak mümkünmüdür?
Eo Cu2+/Cu = 0.337 V; Eo Zn2+/Zn = -0.763 V;
RT
E Cu2 Cu  E Cu2  Cu 
ln M Cu2
nF
-0.763 = 0.337 + 0.05916lg MCu2+
CCu2+ aCu2+ = 2.5410-19 mol dm-3
0,001 M Cu2+ iyonunu 0,001 M Pb2+ iyonundan elektroliz ile ayırmak
mümkümmüdür.
0,5 N CdCl2 çözeltisi Pt anot ve Cd katot ile elektroliz ediliyor.
a)
Elektrolizin başlaması için gerekli minimum potansiyeli bulunuz.
b)
Cd ile birlikte hidrojende çıkması için gerekli PH yi bulunuz.
Elektrokaplama
Anot: Ag – e-  Ag+
Katot: Ag+ + e-  Ag
Alaşım eldesi:
Zn-Fe, Cu-Zn
Kaşımların elektrokaplaması:
Ni-PTFE, Ni-Diamond
Gümüş kaplı çaydanlık
Pirinç Kaplama
Eo Cu2+/Cu = 0.337 V; Eo Zn2+/Zn = -0.763 V;
CCu2+ aCu2+ = 2.5410-19 mol dm-3
Pirinç kaplamasının Cu2+ ve Zn2+ çözeltisinden eldesi mümkün
değildir. ????????????????????
Pirinç Kaplama
Eo Cu2+/Cu = 0.337 V; Eo Zn2+/Zn = -0.763 V;
CCu2+ aCu2+ = 2.5410-19 mol dm-3
Pirinç kaplamasının Cu2+ ve Zn2+ çözeltisinden eldesi mümkün
değildir. ????????????????????
Eo Cu(CN)3-/Cu = -1.03 V; E0 Zn(CN)42-/Zn = -1.12 V;
 E < 0.2 V
Zn ve Cu pirinç olarak kaplanır. Sn eklenirse ne olur
Metal saflaştırma (electrorefining)
Korozyon

Korozyon maddelerin çevreyle
etkileşimleri sonucu
bozunması olayı
Korozyon

Metallerin yükseltgenerek aşınması olayı
Yükseltgenme: Fe(k)
İndirgenme:
Fe2+(suda) + 2 e–
O2(g) + 4 H+(suda) + 4 e–
Net reaksiyon: 2 Fe(k) + O2(g) + 4 H+(suda)
2 H2O(s)
2 Fe2+(suda) + 2 H2O(s)
4 Fe + 3O2 + 2 H2O → 4 FeOOH
2Fe OOH → Fe2O3 + H2O
Yüksek sıcaklıkta;
3 Fe + 4 H2O → Fe3O4 (manyetit) + 4 H2
Metal Korozyonu
M → Mz+ + z ez e- + Z/4 O2 → Z/2 O2M + Z/4 O2
→ MOZ/2
(yükseltgenme)
(indirgenme)
(toplam)
Örnek:
Zn → Zn2+ + 2 e2 HCl + 2e- → H2 + 2 Cl- (2 H+ + 2 e- → H2)
Zn + HCl → H2 + ZnCl (Zn+ + Cl-)
Korozyon
metal çözünmesi; ANODİK:
M  Mn+ + n e(örn. Fe  Fe 2+ + 2 e-)
olası KATOT reaksiyonları:
–
–
–
–
–
Hidrojen indirgenmesi (asidic)
2 H+ + 2 e-  H2
Oksijen indirgenmesi (asidic)
O2 + 4H+ + 4 e-  2 H2O
Oksijen indirgenmesi (nötr veya bazik) O2 + 2 H2O + 4 e-  4 OHMetal indirgenmesi
M3+ + e-  M2+
Metal birikimi
M+ + e-  M


Çoklu katodik reaksiyonlar metal korozyonunu kolaylaştırırhızlandırır.
Metaller havalandırılmış (aerated) asidik çözeltilerde daha kolay ve
hızlı oksitlenirler.
– havalandırılmış (aerated) asidik çözeltilerde:
2 H+ + 2 e-  H2
O2 + 4H+ + 4 e-  2 H2O
– Fe3+ safsızlığı (asitlerde sıkça bulunur):
Fe3+ + e-  Fe2+
ÖRNEĞĠN:
 Nötr veya alkali ortamda;
+
2 Fe  2 Fe2+ + 4 eO2 + 2 H2O + 4 e-  4 OH-
2 Fe + O2 + 2 H2O  2 Fe2+ + 4 OHFe2+ çökeleği tekrar yükseltgenerek pasa dönüşür:
2 Fe(OH)2 ↓ + 1/2 O2 + H2O → 2 Fe(OH)3
MAGNETİT in ÇÖZÜNMESİ
Fe3O4 + 8H+ +2e-
3Fe2+ + 4H2O
0.0591
[ Fe3O4 ][ H  ]8
 E  0.981 
log
n
[ Fe 2 ]3[ H 2O]4
or
0.0591
[ H  ]8
E  0.981 
log
2
[ Fe 2 ]3
0.0591* 8
0.0591* 3
 0.981 
log[ H  ] 
log[ Fe 2 ]
2
2
 0.981  0.236 pH  0.0885 log[ Fe 2 ]volt
Pourbaix diagram, olası tüm reaksiyonları vermektedir.
Pourbaix Diagrams

Pourbaix or E-pH diagrams depict the thermodynamically form of an
element as a function of potential and pH.

The Pourbaix diagram is a type of predominance diagram -- it shows
the predominate form in an element will exist under a given set of
environmental conditions.

These diagrams give a visual representation of the oxidizing and
reducing abilities of the major stable compounds of an element and are
used frequently in geochemical, environmental and corrosion
applications.

Pourbaix diagrams display thermodynamically preferred species.
Kinetics is not incorporated.
How to Read a Pourbaix Diagrams





Vertical lines separate species
that are in acid-base equilibrium.
Non vertical lines separate
species
related
by
redox
equilibria.
Horizontal lines separate species
in redox equilibria not involving
hydrogen or hydroxide ions.
Diagonal boundaries separate
species in redox equilibria in
which hydroxide or hydrogen
ions are involved.
Dashed lines enclose the
practical region of stability of the
water solvent to oxidation or
reduction.
Pourbaix diagram
________ asit-baz dengesine göre türleri
ayırır (a çizgisi)
o a) Fe3+ Fe(OH)3 ile dengede olduğu
pH (0.5 M-0.5 M) konsantrasyon
değişirse pH da değişir.
o Toplam demir konsantrasyonu = 1M
için pH =1,7;
o Toplam demir konsantrasyonu = 1 10-6
M olursa pH =4,2;
Pourbaix diagram



redoks dengesine göre türleri
ayırır (c)
türlerin redoks dengesi hydrogen
veya hidroksil iyonları içermez
(yatay çift çizgi; b)
türlerin redoks dengesi hydrogen
veya hidroksil iyonları içerir.
Diagonal çift çizgi (c)
diagonal sınırlar negatif eğimli;
çünkü bazik ortamda oksitlenmiş
türler kararlıdır.
Pourbaix diagram
--------- suyun teorik olarak kararlı olduğu
bölgeleri ( d & f) ……… pratik
olarak karalı oldukları bölgeri(e & g)
gösterir.

d) oksijenle doymuş suyun
oksitlenme sınırı; bu potansiyelin
üzerinde su oksitlenir.
2 H2O + 4 H+ (aq) O2 + 4 e- Eo = +1.229 V

e ) pratikte, yaklaşık 0.5 V aşırı
gerilimden dolayı yaklaşık 1.80 V
üzerinde oksitlenir ( e)
Pourbaix diagram



f) hidrojen ile doyurulmuş suyun
potansiyeli. Bu seviyenin altında su
hidrojene indirgenir. (teorik)
2 H+ + 2 eH2 Eo = +1.229 V
G) hidrojen ile doyurulmuş suyun
potansiyeli. Bu seviyenin altında su
hidrojene indirgenir. (pratikaşırıgerilim)
Pourbaix diagram
1.
the chemical form of iron that is the
strongest oxidizing agent.
the form of iron that is the strongest
reducing agent
the form of iron that would
predominate in a neutral solution at a
potential of 0.00V
the standard reduction potential for
the reduction of Fe2+ to Fe metal
Potansiyel
The Pourbaix (E-pH) Diagram
2.0
1.6
1.2
0.8
0.4
0.0
-0.4
-0.8
-1.2
-1.6
2H2O = O2 + 4H+ + 4eDenge potansiyeli pH ile azalır
O2 kararlı
2H+ + 2e- = H2 denge
potansiyeli pH ile
H2O kararlı azalır
H2 kararlıpH = - log [H+]
0
7
14
Pourbaix Diagram: Zn
denge
2.0
Zn(OH)2 + 2OH-  ZnO22- + 2H2O
1.6
denge
Zn2+ + 2OH-  Zn(OH)2
1.2
Potansiyel
0.8
Zn(OH)2
0.4
Kararlı
0.0
katı
Zn2+
denge
-  Zn(OH) + 2eÇözeltide
Zn + 2OH
2
denge
kararlı
Zn  Zn2+ + 2e-
-0.4
Denge
-0.822- + 2H2O + 2eZn + 4OH-  ZnO
-1.2
ZnO22kararlı
Zn metal kararlı
-1.6
0
7
14
Pourbaix Diagram:Zn
Korozyon kuvvetli oksidant
gerektirir.
2.0
1.6
Potansiyel
0.8
Zn(OH)2
KOROZYON
0.4
KOROZYON
PASİFLEŞME
Korozyon O2 indirgenmesi ile
gerçekleşir.
1.2
Kararlı
Korozyon H2 çıkışı ile ZnO 2Korozyon
olası,2fakat katı kozosyon
katı
gerçekleşir.
Çözeltide
ürünü
ile engellenir.
Zn2+ çözeltide
0.0
-0.4
kararlı
kararlı
-0.8
-1.2
KARARLI
Zn karalı
-1.6
0
Termodinamik olarak kozozyon
mümkün değil
7
14
Pourbaix Diagram: Mn
Pourbaix Diagrams

Pourbaix or E-pH diagrams depict the thermodynamically form of an
element as a function of potential and pH.

The Pourbaix diagram is a type of predominance diagram -- it shows
the predominate form in an element will exist under a given set of
environmental conditions.

These diagrams give a visual representation of the oxidizing and
reducing abilities of the major stable compounds of an element and are
used frequently in geochemical, environmental and corrosion
applications.

Pourbaix diagrams display thermodynamically preferred species.
Kinetics is not incorporated.
Korozyondan KORUNMA




Metallerin Pasifleşmesi
Boyama, kaplama
Katodik koruma
Galvanizleme
Zn, Al veya Cr !!!!!!!!!!!!!!!
Galvanize Demir
Katodik KORUMA
Katodik KORUMA
Elektrik Akımı ile KORUMA
Sanayi pillerinin Sınıflandırılması
Yakıt
Primer
Sekonder piller
yükseltgen
Yakıt pilleri
Piller
ENERJİ
ENERJİ
ENERJİ
ÜRÜN (H2O)
Recharge
ENERJİ
Volta Pili (1800)
Alessandro Volta
1745 - 1827
NaCl çözeltisi ile
nemlendirilmiş kağıt
Cu
Zn
Primer Piller
Leclanché pili
(1866)
Modern
Zn-Mn pili
Georges Leclanché
(1839-1882)
Anot: Zn  Zn2+ + 2e-
Kapak
Zn kap
MnO2 pasta
(KATOT)
Karbon Çubuk
ANOT
NH4OH
ELEKTROLİT
Gaz boşluğu
Katot: 2MnO2 + 2H2O +2e-  2MnOOH + 2OHZn kap
elektrolit: Zn2+ 2NH4Cl +2OH-  Zn(NH3)Cl2 + 2H2O
MnO3)Cl
2MnO2 + Zn + 2NH4Cl  2MnOOH + Zn(NH
2 pasta
2
(KATOT)
Karbon
Çubuk
(ANOT)
Jel
Elektrolit
Primer Piller
Zn-Mn Alkali pilleri
MnO2 pasta (KATOT)
Jel Elektrolit
Gözenekli
Zn (ANOT)
Anot: Zn + 2OH- - 2e-  Zn(OH)2
Katot: MnO2 + H2O +1e-  MnOOH + OHaaaaaaaaa MnOOH + H2O +e-  Mn(OH)2 + OH-
Zn-Hava Pili
Anot: Zn + 2OH- - 2e-  Zn(OH)2
Katot: 1/2 O2 + H2O + 2e-  Zn(OH)2
Sekonder (rechargeable) piller
Kurşun-Asit akü
Kurşun-Asit akü
E=2.06 V
Pb
PbO2
Güvenlik vanası
36% H2SO4
Pb+(2H++SO42-)-2e-
discharge
charge
PbSO4+ 2H+
PbSO4
PbO
PbO2 2++Pb
Pb++HH2SO
44
2SO
PbO2+(2H++SO42-)+2H++2ePbSO4+H2O
discharge
charge
PbO2 pasta - Pb-ızgara
(KATOT)
PbSO4
discharge
charge
2PbSO
2PbSO4 4++2H
2H2O
2O
Pb pasta Pb-ızgara
(ANOT)
Gözenekli ayıraç
Sekonder (rechargeable) piller
Lityum-iyon pili
Katot:
Discharge
LiMeO2 - xe-
CHARGE
DISCHARGE
Li1-xMeO2 + xLi+
Anot:
C + xLi+ + xe-
Charge
CHARGE
CLix
DISCHARGE
Anot(CLix)
Katot (LiMexOy)
Negatif kutup
LiCoO2 –ticari pillerde kullanılır
LiNiO2, LiMn2O4 -amaçlanmakta
Ayıraç
Aluminyum kap
Pozitif kutup
Sekonder (rechargeable) piller
Nikel-Metal hidrür pilleri
Katot:
NiOOH + H2O - e-
CHARGE
DISCHARGE
Ni(OH)2 + OH-
Anot:
Me-H +
OH-
+
e-
CHARGE
DISCHARGE
Me + H2O
YAKIT PİLİ - Fuel Cells



Anot:
Catot:
Pil reaks.:
2 H2 (g) + 4 OH- (suda) 2 H2O (s) + 4 eO2 (g) + 2 H2O (s) + 4 e-  4 OH- (suda)
2 H2 (g) + O2 (g)  2 H2O (s)
YAKIT PİLLERİ
Voltajın artırılması:
Akımın artırılması:
pillerin seri olarak
bağlanması
Pil yığını
• sıcaklık artışı
ANOT
ELEKTROLİT
KATOT
KATOT
ANOT
ELEKTROLİT
ANOT
• elektrot-elektrolit ara
yüzeyinin artırılması
• katalizör kullanımı
Katot katalizör
Anot katalizör
Bipolar
elektrot
H2
O2
ANOT
ELEKTROLİT
KATOT
Yüzlercesinin yığını
ELEKTROLİT ÜNİTESİ
KATOT
ELEKTROLİT
ANOT
KATOT
ELEKTROLİT
KATOT
ANOT
ANOT
ELEKTROLİT
ELEKTROLİT
KATOT
KATOTE
Bipolar TABAKA
Fosforik Asit Yakıt pili (PAFC)
SiC gözenekli matrix içinde elektrolit
O2
Pt-katalizörler
(anot veya katot)
Gaz (H2 veya O2)
PACF parametreleri:
Atmosferik
basınçta
Akım yoğunluğu - 200- 400 mA cm-2
Tek hücre potansiyeli - 600-800 mV
sıcaklık - 220 oC
H2
Yakıt pillerinde sıvı elektrolitlerin dezavantajları
Düşük çalışma sıcaklığı !
(reaksiyon yavaş, katalizörler pahalı
Üç fazlı sistemin oluşturulmasının
zorluğu
yakıt geçişi kolaylığı!
H2
O2
Anot
sıvı elektrolit
Katot
Proton Exchange Membrane Yakıt pili (PEMFC)
H2O +Hava (O2)
H2
Nafion®
membran
Akım
kollektörü/gaz
dağıtıcısı
Katalizör destekli
karbon tabaka
H+
H2 geçişi
H2
-
Hava (O2)
+
YAKIT PİLİ - Fuel Cells
POTANSİYOMETRİK TİTRASYON
POTANSİYOMETRİK TİTRASYON
Reaktif/ Titrant
Büret motoru
pH/mV
kontrolü
Büret
Çalışma elektrodu
Referans elektrot
Analit
Magnetik karıştırıcı
Ekran
POTANSİYOMETRİK TİTRASYON
pH Elektrot:
- Ag, AgCl(k) | HCl (1.0 M) |CM | || HCl (?? M) ||Referans elektrode +
E pil  E K  E A
 
 
 

 0

H
RT
RT

in 

E pil  E AgCl/ Ag 
ln Cl 
ln 
 E SCE


nF
nF
H
out 




H
RT
in 

E pil  E AgCl/ Ag 
ln 
 E SCE


nF
H
out 



1
RT
  E
E pil   E * 
ln 
SCE

nF H out 

 
 
E pil
E pil
 
 E  0.059 logH  
 E  0.059pH   E
*
*

out
 E SCE
SCE
POTANSİYOMETRİK TİTRASYON
pH Elektrot:
- Ag, AgCl(k) | HCl (1.0 M) |CM | || HCl (?? M) ||Referans elektrode +
Junction Potansiyeli
 
 
H  in
RT
ln
nF H  out
Problem;
Epil = 0,517 V ise pH = ?
POTANSİYOMETRİK TİTRASYON
Çökelme titrasyonları:
- Ag; AgCl (k) | Cl- (?? M) ||Referans elektrode +
VAg = 0 ;
AgCl(k)  e   Ag(k)  Cl 
E oAgCl/ Ag  0.222 V
VAg > 0 ; [Cl-]
Eşdeğer noktada:
[Cl-] = [Ag+]
E pil  E K  E A
 
RT


E pil  E SCE   E 0AgCl/ Ag 
ln Cl  
nF


100,0 mL ??? M NaCl ün 0,100 M AgNO3 ile potansiyometrik titrasyonunda; 15,0 mL , AgNO3 eklendiğinde Epil
+0.095 V ise;
(a) [Cl–]
(c) AgCl nin Kçç nedir?.
POTANSİYOMETRİK TİTRASYON
Çökelme titrasyonları:
I- ve Cl- iyonları içeren bir çözeltinin Ag+ ile potansiyometrik titrasyonu;
- Ag| Cl- (?? M) ; I- (?? M) ||Referans elektrode +
AgCl(k)  e   Ag(k)  Cl 
AgI(k)  e   Ag(k)  I 
E oAgCl/ Ag  0.222 V
E oAgI/ Ag  0.152 V
E pil  E K  E A
 
RT


E pil  E SCE   E 0AgCl/ Ag 
ln Cl  
nF


100,0 mL 0.005 M NaCl ve0.005 M NaI karışımının 0,100 M AgNO3 ile potansiyometrik titrasyonunun
E-V; E/ V- V ; E2/ V2 - V grafiklerini çiziniz
Titration of 2.433mmol of chloride ion with 0.1000M silver nitrate.
(a) Titration curve. (b) First-derivative curve. (c) Second-derivative curve.
POTANSİYOMETRİK TİTRASYON
Redoks titrasyonları:
Fe2+ çözeltinin Ce4+ ile potansiyometrik titrasyonu;
Fe+2 + Ce+4 <=> Ce+3 + Fe+3
- Pt | Fe2+ (?? M) ; Fe3+ (?? M) ||Referans elektrode +
AgCl(k)  e   Ag(k)  Cl 
AgI(k)  e   Ag(k)  I 
E oAgCl/ Ag  0.222 V
E oAgI/ Ag  0.152 V
50.00 mL 0.0500 M Fe+2 çözeltisinin 0.1000 M Ce+4 ile 1.0 M H2SO4ortamındaki
potansiyometrik titrasyonunun E-V; E/ V- V ; E2/ V2 - V grafiklerini çiziniz


Fe+2 + Ce+4 <=> Ce+3 + Fe+3
E = Eo - (0.0592/n) log([red]/[ox])
0.00 mL Ce+4 eklendiğinde , başlangıç noktası;
Ce+4 yok; [Fe+3] çok az ve bilinmiyor; E ?
15.00 mL Ce+4 eklendiğinde, VFeMFe > VCeMCe
[Fe+3]
VCe MCe (15.00 mL)(0.1000 M)
= --------------- = ---------------------------VFe + VCe (50.00 + 15.00)mL
[Fe+2]
VFe MFe - VCe MCe
= -----------------------VFe + VCe
[Fe+2]
(50.00 mL)(0.0500 M) - (15.00 mL)(0.1000 M) -2
= -------------------------------------------------------= 1.54 x 10 M
= 2.308 x 10-2 M
(50.00 + 15.00)mL
E = Eo - (0.0592/n) log([red]/[ox])= E = Eo - (0.0592/n) log([red]/[ox])
E = Eo - (0.0592/n) log([red]/[ox])
E = 0.68 - (0.0592/n) log([1.54 x 10-2 ]/[2.308 x 10-2 M]) = 0.69 V
25.00 mL Ce+4 eklendiğinde, VFeMFe = VCeMCe
Eşdeğer nokta;
EA =EC
EoCe = 1.44 V

POTANSİYOMETRİK TİTRASYON
POTANSİYOMETRİK TİTRASYON
Electroanalytical
methods
Interfacial
methods
Static methods
i=0
Potentiometry
E
dynamic
methods i > 0
Conductometry
G=1/R
Conductometric
titrations
Potentiometric
titrations
volume
Controlled
potential
Constant electrode
potential coulometry
Q =  i dt
Voltammetry
I=f(E)
bulk
methods
Amperometric
titrations
volume
Electrogravimetry
(wt)
Constant
current
Coulometric
titrations Q=it
Electrogravimetry
(wt)
Some factors to be considered in the design of
a voltammetric, or other electrochemical, study
Goal − analytical? thermodynamic? kinetic? mechanistic? synthetic?
Working electrode − material? shape? size? rotate? pretreatment?
Ionic phase − solvent? analyte concentration? vary? product present? outgas?
Other electrode − spacing? reference-reaction? junction? quasi-reference?
Supporting electrolyte − none? excess? choice? vary? buffer?
Excitation − potential or current? single? forward + reverse? repetitive?
Applied waveform − step? ramp? pulse? square-wave? ac? combination?
Time resolution − equilibrium? steady-state? transient? frequency domain?
Ohmic polarization, Ru − ignore? compensate? measure-and-model?
Activation polarization − reversible? quasireversible? irreversible?
Concentration polarization, transport − diffusion? migration? convection?
Homogeneous chemistry − absent? equilibrium? kinetics? ion-pairing?
Predictive modelling − analytical? numerical? simulative? how simulate?
Theory/experiment comparison − intuitive? overlay? data-processing? replot?
o
Voltammetry
Purpose
Voltammetry is used to study the mechanism, kinetics, and thermodynamics
of chemical reactions.
Voltammetry: measurement of current (I) as a function of applied potential
(E).
Different voltammetric techniques are distinguished primarily by the
potential function that is applied to the working electrode and by the material
used as the working electrode.
Cyclic Voltammetry
Purpose
Cyclic Voltammetry is used to study the mechanism, kinetics, and thermodynamics of chemical
reactions. Both heterogeneous reactions occurring at the electrode surface, and homogeneous
reactions in solution can be studied.
In the classical Cyclic Voltammetry triangle waveform, the potential is swept from an Initial E,
to vertex E, and back to Final E, where Final E equals Initial E.
An example of this applied waveform is shown below. Repeating this waveform for N times
will perform N cycles of Cyclic Voltammetry.
EXCITATION
-2
Ev1
Ef
0 E
i
I (A)
E (V)
Ev1
10
-1
1
Ei
Ef
0
-10
2
0
RESPONSE
20
Ev2
Ev2
20
40
60
t (s)
80
100
-20
1
0
-1
E /V (vs.SCE)
-2
Cyclic Voltammetry
For a simple redox reaction:
R + ne
O
A: At the start of the experiment, the bulk solution
contains only the reduced form of the redox couple (R) so
that at potentials lower than the redox potential, i.e. the
initial potential, there is no net conversion of R into O, the
oxidised form (point A).
C: At the anodic peak, the redox potential is sufficiently
positive that any R that reaches the electrode surface is
instantaneously oxidised to O. Therefore, the current now
depends upon the rate of mass transfer to the electrode
surface and so the current starts to decrease.
30
E
20
I / A
B: As the redox potential is approached, there is a net
anodic current which increases exponentially with
potential. As R is converted into O, concentration
gradients are set up for both R and O, and diffusion
occurs down these concentration gradients.
10
D: 0Upon reversal of the scan, the current
A
continues to decay until
the potential
B
-10 the redox potential.
nears
D
-20
E: At this point, a net reduction of O to R
-30
occurs
which C
causes a cathodic current
which
a peak
0.6 eventually
0.4
0.2 produces
0.0
-0.2
-0.4shaped
+
response.
E / V vs. Ag /Ag
A: initial state of the system is
established.
Cyclic Voltammetry
If a redox system remains in equilibrium
throughout the potential scan, the
electrochemical reaction is said to be
reversible.
the following parameters characterize the
cyclic voltammogram of the redox process.
+
Ep = (Ep,a – Ep,c) = 59/n mV at 25 oC for
all scan rates
Ip,a/Ip,c = 1 for all scan rates.
the peak current function increases linearly
as a function of the square root of v.
+
30
20
I / A
the peak width is equal to 28.5/n mV for all
scan rates.
-1
Fc/Fc couple recorded in DMSO/TBAP at 100 mVs scan rate vs. Ag/Ag reference electrode on Pt electrode
+
-1
Fc/Fc couple recorded in DCM/TBAP at 100 mVs scan rate vs. SCE reference electrode on Pt electrode
10
0
-10
-20
-30The peak current, i , is described by the
p
-40Randles-Sevcik equation for reversible redox
-50reaction:
-60I = (2.69x105) n3/2 A C D1/2 v1/2
p
1.0
0.5
0.0
E/V
-0.5
Cyclic Voltammetry
The potential difference between the
reduction and oxidation peaks of a redox
couple is theoretically 59 mV for a
reversible reaction. In practice, the
difference is typically 70-100 mV.
40
20
Larger differences, or nonsymmetric
reduction and oxidation peaks are an
indication of a nonreversible reaction.
Ep, Ip,a/Ip,c and Ip vs.
parameters of
cyclic voltammograms make CV most
suitable
for
characterization
and
mechanistic studies of redox reactions at
electrodes.
I / A
0
-20
-1
25 mVs
-1
50 mVs
-1
100 mVs
-1
250 mVs
-1
500 mVs
-40
v1/2
To follow the change of the parameters;
Ep, Ip,a/Ip,c and Ip vs. v1/2 ; CVs at
diferrent scan rates are recorded.
-60
0.6
0.4
0.2
0.0
-0.2
+
E / V vs. Ag /Ag
-0.4
-0.6
Mechanistic complications: The E mechanism
Mechanistic complications: The EE mechanism
Mechanistic complications: The EC mechanism
The shape of a voltammogram can be
significantly altered if there is a coupled
chemical reaction either before or after the
electrochemical process.
Further complications attributed to the
chemical nature of the reaction, the degree of
reversibility, the rate and equilibrium
constants of the process can all play a part in
the final shape of the voltammogram and on
the information that can be obtained from a
set of experiments.
In general terms, coupled mechanistic
schemes are described by the letters E
(electrochemical) and C (chemical).
Mechanistic complications: The EC mechanism
Mechanistic complications: The EC mechanism
Mechanistic complications: The EC mechanism
Mechanistic complications: The EC mechanism
Mechanistic complications: The ECE’ mechanism
Mechanistic complications: The ECE’ mechanism
Mechanistic complications: The EECE’ mechanism
Mechanistic complications: The EECE’ mechanism
Mechanistic complications: The ECECE mechanism
EE
ECE
Mechanistic complications: The ECECE mechanism
ECEC
ECEC
The design of electrochemical cell

Electrodes
working electrode(s),
counter electrode and
reference electrode



Electrolyte
solvent and counter salt
Cell container
Gas purging
Cyclic Voltammetry
Working electrode






most common is a small sphere, small disc or a short wire, but it could also
be metal foil, a single crystal of metal or semiconductor or evaporated thin
film
has to have useful working potential range
can be large or small – usually < 0.25 cm2
smooth with well defined geometry for even current and potential
distribution
mercury and amalgam electrodes
reproducible homogeneous surface,
large hydrogen overvoltage.
wide range of solid materials – most common are “inert” solid electrodes
like gold, platinum, glassy carbon.
reproducible pretreatment procedure,
proper mounting
Counter electrodes




to supply the current required by the W.E. without limiting the measured response.
current should flow readily without the need for a large overpotential.
products of the C.E. reaction should not interfere with the reaction being studied.
it should have a large area compared to the W.E. and should ensure equipotentiality of
the W.E.
Reference electrode


The role of the R.E. is to provide a fixed potential which does not vary during the
experiment.
A good R.E. should be able to maintain a constant potential even if a few microamps
are passed through its surface.
mercury – mercurous chloride (calomel)
the most popular R.E. in aq. solutions; usually made up in saturated KCl solution
(SCE);
may require separate compartment if chloride ions must be kept out of W.E.
 silver – silver halide
gives very stable potential; easy to prepare;
may be used in non aqueous solutions

Reference electrode
A reference electrode is an oxidation–reduction half-cell of known and
constant potential at a particular temperature.
It consists of three parts:
 An internal element.
 A filling solution that also constitutes the salt-bridge electrolyte.
 An area in the tip of the electrode that permits a slow, controlled flow of filling
solution to escape the electrode and maintain electrical conductance with the
remainder of the electrochemical cell.
The silver–silver chloride reference electrode
The silver–silver chloride electrode is often a silver wire coated with silver chloride that is
immersed in a filling solution of potassium chloride of known concentration, usually 1.0M, and
saturated with silver chloride. In the cartridge form the metal is in contact with a paste of the salt
moistened with electrolyte, and all is enclosed in an inner glass tube.
One equilibrium involved is
The expression for the electrode potential is
In addition, there is a chemical equilibrium,
Combining Eqs. gives the Nernst expression for the chloride ion:
This simplifies to
Calomel reference electrode
Calomel electrodes have a construction that is similar to the cartridge type of
silver–silver chloride electrodes.
They comprise a platinum wire in contact with mercury and a paste of mercury(
I) chloride, mercury, and potassium chloride, moistened with the filling solution,
which is enclosed in an inner glass tube and makes contact with a filling solution
of potassium chloride (usually 0.1M, 1.0M, or saturated, 4.2M) through a porous
plug.
The electrolyte solution

it consists of solvent and a high concentration of an ionised salt and
electroactive species studied.
a high concentration of an ionised salt is used
to diminish mass transport of the electroactive species by migration.
to increase the conductivity of the solution,
to reduce the resistance between W.E. and C.E. (to help maintain a uniform
current and potential distribution)
to reduce the resistance between W.E. and R.E. to minimize the potential
error due to the uncompensated solution resistance iRu
Solvent and Supporting Electrolyte
Almost every electrochemical experiment is carried out in a medium
consisting of a solvent and supporting electrolyte.
A handful of solvent-electrolyte combinations would probably suffice for the
majority of electrochemical applications.
In order to optimize conditions for an electrode reaction, one must consider
how its chemical and electrochemical features, for example, the chemical
properties of expected intermediates, might be affected by the solvent or
electrolyte.
A solvent is chosen such that its merits outweigh its disadvantages in a
particular situation.
A good solvent system for one type of experiment may be wholly unsuitable
for other applications.
The most important properties that the ideal solvent system ought to possess
are electrochemical inertness (stability over a wide range of potentials), high
electrical conductivity, good solvent power, chemical inertness, liquid range,
availability in pure form or ease of purification, and low cost.
Solvent and Supporting Electrolyte
Electrochemical Inertness
The solvent system should not undergo any electrochemical reaction over a wide range of
potentials from very positive (strongly oxidizing) to very negative (strongly reducing).
The potential at which electrochemical reaction of the solvent system (either the supporting
electrolyte or the solvent itself) commences is known variously as the solvent breakdown
potential, solvent decomposition potential, or solvent window.
Certain systems can be used over a very wide potential range; one of the best for this purpose is a
solution of tetrabutyl ammonium hexafluorophosphate in acetonitrile, which exhibits anodic and
cathodic breakdown limits of +3.4 and -2.9 V (vs. SCE), respectively.
In practice, however, one rarely needs both extended positive and negative ranges in a single set
of experiments; solvents are frequently used that exhibit either a very negative or very positive
decomposition potential, but not both.
Both nitrobenzene and methylene chloride have been used for studies of oxidation processes
because they are hard to oxidize, hovewer they are quite easily reduced.
Conversely, liquid ammonia and methylamine are good solvents for electrochemical reductions,
although poor for oxidations.
Solvent and Supporting Electrolyte
Chemical Inertness
The solvent should not react with the electroactive material nor with intermediates or
products of the electrode reaction under investigation.
No one solvent can reasonably be expected to be unreactive toward all of the many
kinds of reactive species that can be generated electrochemically.
When selecting a solvent, one does have to make some informed guesses about likely
intermediates and products, based on chemical experience.
The solvent and electrolyte can affect an electrode process in a number of ways other
than by reacting chemically with the electrolysis intermediates or products.
The rate of heterogeneous electron transfer from the electrode to the electroactive
substance can be affected by the structure of the electrical double layer at the electrode
surface, which in turn is dependent on the nature of the solvent and supporting
electrolyte.
Acidic cations, such as tri- ethylammonium and guanidinium ions, can protonate shortlived intermediates generated at the electrode surface before such intermediates can
escape into bulk solution.
Recomended Solvent and Supporting Electrolyte
Electrochemistry of inorganic salts
Solutions of inorganic salts in water meet many of the preceding desirable solvent criteria, and have been used for innumerable electrochemical studies.
Much inorganic electrochemistry has been carried out in water with little
difficulty.
Many inorganic supporting electrolyte (e.g., NaBF4, LiC104, or NaCIO4) may
be necessary in such cases.
Electrochemistry of Organic and organometallic compounds
Recommended
electrolytes
include
tetrabutylammonium
hexafluorophosphate (TBAHFP), tetrabutylammonium perchlorate (TBAP) and
tetrafluoroborate (TBATFB), which are readily obtained in pure form and
have high solubilities in AN, DMSO, DCM, THF and etc.
Some tips to perform a CV measurements
Chose a proper solvent and supporting electrolyte.

Chose a proper electrode configuration.

Prepare 0.1 M supporting electrolyte solution.

Take 5 mL of supporting electrolyte solution into the CV cell

Purge with an inert gas to remove desolved oxygen at least 15 min.

Maintain an inert gas blanket during the experiment.

Take the background CV of the supporting electrolyte system to ensure
the purity and to determine the solvent window.
If the background CV is clear;

Dissolve electroactive species to optain a known concentration.

Record the CV of the electroactive species with different scan rates,
swithcing potential, electrode set, concentration etc.

Differential Pulse Voltammetry
Differential Pulse Voltammetry (DPV) is used for both quantitative chemical analysis
and to study the mechanism, kinetics, and thermodynamics of chemical reactions.
It is often used with a Dropping Mercury Electrode (DME) or with a Static Mercury
Drop Electrode (SMDE). When used with either of these electrodes it is often called
Differential Pulse Polarography (DPP), although this name is often used for the general
technique.
DPV used as an analytical tool offers advantages when compared to other
electrochemical techniques. DPV is very sensitive – often allowing direct analyses at the
ppb (parts per billion) level. When used in a stripping mode, ppt (parts per trillion)
analyses are possible.
DPV owes its sensitivity to the relatively short pulse time and its differential nature. The
short pulse time increase the measured currents while the differential measurement
discriminates against background processes.
Differential Pulse Voltammetry
-1.2
60
-1.0
40
20
-0.6
Data read point
I / mA
E / mV
-0.8
-0.4
0
-0.2
-20
0.0
-40
0.2
-10
0
10
20
30
40
50
t /s
60
70
80
90
100 -60
110
0.0
-0.5
E / mV vs. SCE
-1.0
-1.5
Differential Pulse Voltammetry
100
80
60
40
60
A
-1
25 mVs
-1
50 mVs
-1
100 mVs
-1
250 mVs
-1
500 mVs
40
R2
R1
B
R3
20
20
0
0
-20
O2
R1
O1
R3
R2
O'1
-20
-40
O1
O'1
-40
-60
-60
-80
1.5
1.0
0.5
0.0
-0.5
E / mV vs. SCE
-1.0
-1.5
-2.0
1.5
1.0
0.5
0.0
-0.5
E / mV vs. SCE
-1.0
-1.5
-2.0
Chronoamperometry
The electroanalytical techniques, chronoamperometry, chronocoulometry, and
chronoabsorptometry are all based on the same excitation function of one or more
potential steps that are applied to an electrode immersed in a nonstirred solution.
The system response is thus identical for all three techniques.
They differ only in the data domain of the monitored response.
Ev1
-0.5
0.1

0.0
I / mA
-0.4
V / mV
-0.3
-0.2

-0.1
0.0
Ei
0
-0.2
Ev2
5
10
15
t (ms)
-0.1
-0.3
20
25
0.0
0.1
0.2
t/s
0.3
0.4
Chronoamperometry
I
Cottrell Equation:
Ev1
-0.5
0.0
I / mA
V / mV
-0.3
-0.2
-0.1
0.0
Ei
0.0
Ev2
0.1
1/ 2 t 1/ 2
0.1

-0.4
nFACoO D1O/ 2
0.2
0.3
t (s)

-0.1
-0.2
-0.3
0.4
0.5
0.0
0.1
0.2
t/s
0.3
0.4
Chronocoulometry
Anson
Equation:
Ev1
-0.5

-0.4
V / mV
-0.3
Q
-0.2

-0.1
0.0
Ei
Ev2
0.0
0.1
0.2
0.3
0.4
nFACoO D1O/ 2

1/ 2
0.5
t (s)
Q
A
Forward scan
B
Forward scan
0
0
Backward scan
t/s
Backward scan
t1/2 / s1/2
t
1/ 2
K t
1/ 2
Chronoamperometry
Anson Equation: Q( t ) 
A
Q/ mC
nFACoO D1O/ 2
1/ 2
t 1/ 2  Q dl  nFAO
B
Qt
Forward scan
Qdl
Forward scan
Qdl
Qads
0
0
Backward scan
t/s
Backward scan
t1/2 / s1/2
In-Situ SPECTROELECTROCHEMISTRY
Potantiostat
studying electrode processes by
experiments that involve spectral changes
with the usual electrochemical variables of
current, charge, and potential.
Spectrophotometer
•
•
•
•
It is posible to measure:
Absorbance
Transmitance
Reflectance
Irradiance
Light Source
In situ techniques involve examination
of the electrode surface due to the
interaction of electromagnetic radiation
while it is immersed in solvent in the
electrochemical cell, often under potential
control and during the passage of current.
optically transparent thin-layer electrode (OTTLE)
Quartz thin-layer spectroelectrochemical Cell
configuration
A
-40
A
R2
R1
B
Abs.
-20
0
-1
50 mVs
-1
100 mVs
-1
250 mVs
-1
500 mVs
20
O1
40
60
1.5
O2
1.0
0.5
0.0
-0.5
-1.0
-1.5
-2.0
-20
C
-2.5
D
B
-10
0
O2
R1
O1
Abs.
I / A
I / A
In-Situ SPECTROELECTROCHEMISTRY
R2
10
20
300
30
1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
-2.0
-2.5
400
500
600
700
Wavelength (nm)
800
900
300
400
500
600
700
Wavelength (nm)
E / V vs.SCE
CVs (A) and DPVs (B) of MnPc on Pt
working electrode versus SCE in
DMSO/TBAP electrolyte system.
In-situ UV-vis spectral changes of MnPc
A) Eapp= -0.50 V. B) Eapp= -1.45 V.
B) C) Eapp= 0.55 V. D) Eapp= 1.00 V.
800
900
Stripping Voltammetry
Stripping voltammetry is a very sensitive method for the analysis of trace
concentrations of electroactive species in solution. Detection limits for metal ions at subppb concentrations have been reported.
In this experiment, a mercury working electrode is used – such as; the Hanging
Mercury Drop Electrode (HMDE).
Metal ions in solution are first reduced to metallic form and concentrated as
mercury amalgam in a mercury film electrode. After concentration, they are re-oxidized
into solution ("stripped") from the electrode.
There are 3 important parts in a stripping experiment:
Deposition
Quiet time
Stripping
Stripping Voltammetry
Stripping Voltammetry
Deposition
During the deposition step, the potential applied to the mercury electrode is held at
a value (Deposition E) at which the ions are reduced to metal for a pre-determined time
period (Deposition Time).
The metal then amalgamates with the mercury electrode. The effect of this
amalgamation is to concentrate the metal in the mercury electrode, and hence the
concentration of metal in the electrode is much greater (typically 2 or 3 orders of
magnitude) than the concentration of metal ion in the solution (consequently, the
deposition step is often called the preconcentration or accumulation step).
Quiet time
The efficiency of the deposition can be increased by stirring either the solution or
rotating the electrode.
Stripping Voltammetry
Stripping
During the stripping step, the applied potential is scanned in a positive direction,
and the metal in the mercury electrode is oxidized back to ions in solution; that is, the
metal is "stripped" from the electrode.
The potential at which the stripping occurs is related to the redox potential of the
analyte, and hence the potential of the current peak on the stripping step can be used to
identify the analyte.
The magnitude of the current of the stripping peak is proportional to the
concentration of the analyte in the mercury electrode. Since the concentration of the
analyte in the electrode is related to its concentration in solution, the stripping peak
current is therefore proportional to the solution concentration.
For quantitative analysis, a series of standard solutions must also be run. This
method is capable of quantitative measurements to the parts per billion range.
A number of different wave forms have been used for the stripping step, including
linear sweep voltammetry (LSSV), differential pulse voltammetry (DPSV), and square
wave voltammetry (SWSV). SWSV and DPSV are more commonly used, due to their
lower detection limits.
Stripping Voltammetry
anodic stripping voltammetry
The above method is called anodic stripping voltammetry (ASV), since the
stripping current is anodic.
This method can be used for metal ions that can be readily reduced to the metallic
state and reoxidized - about 20 metal ions, including lead, copper, cadmium, and zinc.
This is not as many as can be detected using atomic absorption spectroscopy
(AAS), although the sensitivity of ASV is comparable with, and sometimes better than
AAS.
The advantage of ASV over AAS is its ability to detect several metal ions
simultaneously. In addition, different oxidation states of a given metal can be detected
(e.g., arsenic and antimony).
Stripping Voltammetry
cathodic stripping voltammetry and adsorptive stripping voltammetry
Other stripping voltammetric techniques include cathodic stripping voltammetry
(CSV) and adsorptive stripping voltammetry (AdSV).
The basis for CSV is the oxidation of mercury followed by the formation of an
insoluble film of HgL (L is the analyte) on the surface of the mercury electrode during
the deposition step.
CSV is most commonly used for detection of sulfur-containing molecules (e.g.,
thiols, thioureas, and thioamides), but it has also been used for molecules such as
riboflavin and nucleic acid bases (e.g., adenine and cytosine).
AdSV is different from ASV and CSV in that the deposition step is nonelectrolytic, and occurs via the adsorption of molecules on the surface of the working
electrode (the HMDE is most commonly used). The stripping step can be either anodic or
cathodic. AdSV has been used for organic molecules (e.g., dopamine, chlorpromazine,
erythromycin, dibutone, and ametryne) and for metal complexes of metals not amenable
to detection by ASV (e.g., cobalt and nickel).
Stripping Voltammetry
Stripping Voltammetry
Cd2+ and Cu2+ solution;
Stripping Voltammetry
Zn2+, Pb2+, Cd2+ and Cu2+ solution;
Stripping Voltammetry
What are the detection limits?
With ASV, the measurement plating time is proportionate to the detection limit
and, as such, longer plate times will increase the detection limit:
 Part per million is instantaneous
 Part per billion in 20 seconds or less
 Part per trillion takes 1-3 minutes
What kind of sample preparation is required?
In General: no electrode rotation or sample de-oxygenation is required.
Clean samples: require no sample preparation other than the addition of a
suitable supporting electrolyte.
Stripping Voltammetry
How accurate is ASV?
Accuracy is proportionate to the way you calibrate your sample:
5% when calibrated directly via the method of standard additions.
10% when a calibration curve is built before measuring unknowns .
20% - 40% when operating uncalibrated.
The sensitivity of voltammetric methods is due to the use of a pre- concentration, or
accumulation, step in which the analyte is accumulated at the electrode by either a faradaic
(anodic or cathodic stripping) or non-faradaic (absorptive) process.
The analytical signal is then generated by the subsequent voltammetric stripping step, where
the voltage is swept, or stepped, so as to remove the adsorbed analyte from the electrode.
The current during this process is recorded, usually as a function of voltage, and the area of
the current wave produced (proportional to the charge passed) is measured.
Quantification is then performed by calibration, usually by a sequential standard addition
methodology, where known quantities of a standard solution are added to the same analysis
vessel.
Stripping Voltammetry
Effect of the deposition time upon DPV adsorptive stripping detection of 10 µM daunomycin in 200 mM
acetate buffer at pH 5.0 on a HMDE; deposition potential -0.65 V, scan rate 10 mV/s, pulse amplitude 25 mV.
Stripping Voltammetry
Effect of the deposition time upon DPV adsorptive stripping detection of 10 µM daunomycin in 200 mM
acetate buffer at pH 5.0 on a HMDE; deposition potential -0.65 V, scan rate 10 mV/s, pulse amplitude 25 mV.
Stripping Voltammetry
Effect of the deposition potential upon DPV adsorptive stripping detection.
-0.90 - -1.40 V (a - f)
Stripping Voltammetry
Effect of the deposition time upon DPV adsorptive stripping detection
30, 60, 120, 180, 300 s
Stripping Voltammetry
Download