! " #" $ % % % % & ' ! $ % % () ! #" !& $ & $ * ! ! +) ,)-$ -. %) ! - −−−−−−−− 10 + 10 "# x0 = −1 x1 = 0 x2 = 1 f (x) = sin πx 2 /$$ 0 P2 (x)1 $% 2% /$$ & 3 & (x − x1 )(x − x2 ) (x − 0)(x − 1) x(x − 1) 1 = = = (x2 − x), (x0 − x1 )(x0 − x2 ) (−1 − 0)(−1 − 1) 2 2 2 (x − x0 )(x − x2 ) (x + 1)(x − 1) x −1 L1 (x) = = = = 1 − x2 , (x1 − x0 )(x1 − x2 ) (0 + 1)(0 − 1) −1 (x + 1)(x − 0) (x + 1)x 1 (x − x0 )(x − x1 ) L2 (x) = = = = (x2 + x). (x2 − x0 )(x2 − x1 ) (1 + 1)(1 − 0) 2 2 L0 (x) = *% f (x0 ) = f (−1) = sin −π = −1 f (x1 ) = f (0) = sin 0 = 0 f (x2 ) = f (1) = 2 π sin 2 = 1 " x0 = −1 x1 = 0 x2 = 1 f (x) = sin πx 2 & /$$ 0 P2 (x) = f (x0 )L0 (x) + f (x1 )L1 (x) + f (x2 )L2 (x) 1 1 = (−1) (x2 − x) + 0(1 − x2 ) + (1) (x2 + x) 2 2 1 1 = (−x2 + x + x2 + x) = (2x) = x 2 2 "# |f (x) − P2 (x)| " ! $% 2% $ 3 f (x) = sin πx π π2 π3 πx πx πx , f (x) = cos , f (x) = − sin , f (x) = − cos . 2 2 2 4 2 8 2 " z(x) −1 1 f (z(x)) (x − x0 )(x − x1 )(x − x2 ) |f (x) − P (x)| = 3! 3 − π cos πz(x) 8 2 = (x + 1)(x − 0)(x − 1) 3! π 3 π3 3 πz(x) 3 |x − x| = |x − x| cos 8 · 3! 2 48 1 4 |x3 − x| & " g(x) = x3 − x $. . - $. 3 √ 1 1 1 1 2 3 2 ⇒ g ± g (x) = 3x −1 = 0 ⇒ x = ± − ± = = ± 3 3 3 3 9 " √ √ π3 3 π3 3 π3 π3 2 3 3 max |x − x| = = |f (x) − P (x)| |x − x| 48 48 x 48 9 216 5 + 10 −x "# f (x) = e − sin x & . $% 5 f (x) & *)'" ") " ! a < b " " a, b !& f (a)f (b) < 0 & $!% - a = 0 b = 1 $. . f (a) = f (0) = e0 − sin 0 = 1 > 0, f (b) = f (1) = e−1 − sin 1 = −0.47359 " f (0)f (1) < 1 " - *)'" $. [0, 1] " f (x) = e−x − sin x & . " $ "# 6 " . )-. , 7 $) ! 8" 9 $% 6 $. . ! " 3 n an bn pn f (pn ) : ; : ;: −<; : ;: =: −7<= 7 : =: :=: =7 - $. . p ≈ p4 = 0.5625 15 y = x − 4x − 5 y = e − 4x − 5 " >? , p0 = 3 ε = 10−3 8" .9 $% - " (x, y) %" x3 − 4x − 5 = ex − 4x − 5 ⇒ x3 = ex " " x f (x) = x3 − ex & . f (x) & f (x) = 3x2 − ex & p0 = 3 $! ! f (p0 ) = f (3) = 3 · 32 − e3 = 6.9145 = 0 "" >? , - $. n−1 ) pn = pn−1 − ff(p ! $ " $ 3 (pn−1 ) 3 x f (3) 6.9145 f (p0 ) =3− =3− = 2 ⇒ f (p1 ) = f (2) = 0.61094 > ε f (p0 ) f (3) 6.9145 f (2) 0.61094 f (p1 ) =2− =2− = 1.8675 ⇒ p2 = p1 − f (p1 ) f (2) 4.6109 f (p2 ) = f (1.8675) = 0.40915 × 10−1 > ε f (1.8675) 0.040915 f (p2 ) = 1.8675 − = 1.8675 − = 1.8572 ⇒ p3 = p2 − f (p2 ) f (1.8675) 3.9906 f (p3 ) = f (1.8572) = 0.63619 × 10−4 < ε p1 = p0 − n pn =;: :; f (pn ) =< 7: = <7 0.40915 × 10−1 0.63619 × 10−4 - $. " 10−3 " p3 = 1.8572 10 + 5 "# f (x) = cos x − (x + 1)2 & x = 0 % 0 8 $ 9 $% 5 %" ! " 3 f (x) = cos x − (x + 1)2 , f (x) = − sin x − 2(x + 1), f (x) = − cos x − 2, f (x) = sin x, f (0) = cos 0 − (0 + 1)2 = 0, f (0) = − sin 0 − 2(0 + 1) = −2, f (0) = − cos 0 − 2 = −3, f (0) = 0. - $. f (0) f (0) f (0) (x − 0) + (x − 0)2 + (x − 0)3 1! 2! 3! −2 −3 2 0 3 =0+ x+ x + x 1! 2! 3! 3 2 = −2x − x 2 P3 (x) = f (0) + 0 "# :)@ " 3 P3 (0.05) = −2(0.05) − (0.05)2 = −0.10375 2 - $. |f (0.05) − P3 (0.05)| = | cos(0.05) − (0.05 + 1)2 − (−0.10375)| = 2.6039 × 10−7 " | cos(0.05) − (0.05 + 1)2 − (−0.10375)| |f (0.05) − P3 (0.05)| = |f (0.05)| | cos(0.05) − (0.05 + 1)2 | = 2.5098 × 10−6 , " ! ! $! & " ! 7 15 + 5 "# sin x − x 1.4 = 0 [1, π/2] " !. )> , ! g(x) & 8g(x) &) " " $. $9 x = 0 ⇒ x = 1.4 sin x " g(x) = 1.4 sin x &) $% sin x − 1.4 [1, π/2] " )> "" $. 6 g(x) & [1, π/2] " " ! *% g (x) = 1.4 cos x & x ∈ [1, π/2] ! & " g(x) & ' ") π/21 " 11 g(x) & %" " g(π/2) g(1) " g(π/2) = 1.4 sin π π = 1.4 < = 1.5708 2 2 g(1) = 1.4 sin 1 = 1.1781 > 1 $!" x ∈ [1, π/2] ! g(x) ∈ [1, π/2] " 6 g(x) &) [1, π/2] " '" & |g (x)| = |1.4 cos x| = 1.4| cos x| 1.4 max π | cos x| 1 x 2 " h(x) = cos x & x ∈ [1, π/2] ! h (x) = − sin x < 0 ." "" " ! - $. |h(1)| = | cos 1| = 0.54030 > |h(π/2)| = cos π =0 2 " |g (x)| 1.4 max π | cos x| = 1.4 cos 1 = k = 0.75642 < 1 1 x 2 ' g(x) & [1, π/2] " "# 89 g(x) & p0 = 1.4 ) !. ε = 10−6 ! $ 8% $9 $% p0 = 1.4 p1 = g(p0 ) = 1.4 sin 1.4 = 1.37961 n kn $. |pn − p| ≤ 1−k |p1 − p0 | ≤ 10−6 " |pn − p| 0.75642n 0.75642n |1.3796 − 1.4| 10−6 ⇒ (0.0204) 10−6 ⇒ 1 − 0.75642 0.24358 0.75642n 0.11940 × 10−4 ⇒ n log(0.75642) log(0.11940 × 10−4 ) ⇒ n(−0.12124) −4.9230 ⇒ n 40.605 n 41 : 15 p0 = 1 p1 = 1.2 % , ln x = cos x !. ε = 10−3 8" .9 $% f (x) = ln x−cos x - . " " x " 4 % , $ ε = 10−3 p0 = 1 n−1 )(pn−1 −pn−2 ) p1 = 1.2 ! . pn = pn−1 − f (pf (p " n−1 )−f (pn−2 ) f (p1 )(p1 − p0 ) f (1.2)(1.2 − 1) = 1.2 − f (p1 ) − f (p0 ) f (1.2) − f (1) (−0.18004)(0.2) = 1.2 − = 1.3 (−0.18004) − (−0.54030) f (p2 ) = f (1.3) = −0.51346 × 10−2 ⇒ |f (p2 )| = |f (1.3)| = 0.51346 × 10−2 > ε = 10−3 f (1.3)(1.3 − 1.2) f (p2 )(p2 − p1 ) = 1.3 − p3 = p2 − f (p2 ) − f (p1 ) f (1.3) − f (1.2) −2 (−0.51346 × 10 )(1.3 − 1.2) = 1.3 − = 1.3029 (−0.51346 × 10−2) − (−0.18004) f (p3 ) = f (1.3029) = −0.11084 × 10−3 ⇒ |f (p3 )| = |f (1.3029)| = 0.11084 × 10−3 ≤ ε = 10−3 p2 = p1 − - $. . p ≈ p3 = 1.3029 n pn f (pn ) −0.54030 −0.18004 −0.51346 × 10−2 0.11084 × 10−3 < =