ENM 319 KALİTE KONTROL Yrd. Doç. Dr. Ercan ŞENYİĞİT Bu ders notunun hazırlanmasında Montgomery’in Statistical Quality Control kitabı kaynak olarak kullanılmıştır. Kalite • Kalite, bir ürün veya hizmetin belirlenen veya olabilecek ihtiyaçları karşılamaya dayalı karakteristikler toplamıdır. (ISO) • Kalite: Müşteri beklentilerini uygun bir biçimde karşılayacak ürün veya hizmet üretebilme yeteneğidir. • KALİTE DEĞİŞKENLİKLE TERS ORANTILIDIR. DEĞİŞKENLİK • Herhangi bir süreçte, kontrolümüzde olmayan değişkenliğin nedenleri vardır. • Fazla değişkenlik, ürün hatalarına, mutsuz müşterilere ve gereksiz maliyetlere neden olur. • Değişkenliği anlamada ve iyileştirmeyi sağlamada yardımcı olmak üzere değişkenliği belirlemek ve niceleştirmek için istatistiksel yöntemler kullanılabilir. Vites Kutusu örneği Ford firmasının 1980’lerdeki bir deneyimi, parça üretiminde hedeften sapma sonucu oluşan varyasyonun, firmaya parasal kayıp olarak döndüğünü göstermektedir. Ford, imal etmekte olduğu otolara şanzıman üretmek üzere iki ayrı firmaya sipariş verir. Tedarikçi firmalardan biri, bir Amerikan firması, diğeri Japon Mazda firmasıdır. Her iki firma da, şanzımanları, Ford’un spesifikasyonlarına göre üretip teslim ederler. Garanti süresi içinde şanzıman sorunlarından kaynaklanan garanti talepleri oluşur. Ford yetkilileri, sorunlu şanzımanları üretici firmaya göre sınıflandırdıklarında, Amerikan firmasının ürettiği grubun, sayısal olarak diğerinden birkaç kat daha fazla olduğunu görürler. Bunun üzerine, şanzımanların bazı kritik performans değişkenlerinin olasılık dağılımını hesaplarlar. Durum Şekillerdeki gibidir. Her iki firmanın da ürettiği şanzımanlar, istenilen spesifikasyon sınırları içerisindedir. Ancak, Amerikan firmasının ürettiği şanzımanlarda değişkenlik daha fazladır. Bu şanzımanlar, daha sık ve daha erken arıza yaparak firmanın maliyetini artırmaktadır. Kalitenin iyileştirilmesi • Kalite iyileştirmesi, süreçlerde ve ürünlerde değişkenliği azaltmaktır. • Vites kutusu örneği, bu tanımın anlamını açıklamaktadır. • Eşdeğer bir tanıma göre, kalite iyileştirmesi israfın azaltılmasıdır. Bu tanım, hizmetlerde veya işlemlere dayalı işler için yararlıdır. Ürün kalite boyutları • Performans; temel işletim özellikleri, (resmin parlaklığı) • Özellikler; temel özelliklere ek olarak eklenen özellikler (uzaktan kumanda) • Güvenilirlik; zaman içinde ürünün bozulma olasılığı • Uygunluk; belirlenmiş standartlara uygunluk • Dayanıklılık; yenilemeden önceki yaşam süresi • Servis görebilirlik; onarımın kolay olması, hızı ve onarımın yetkinliği • Estetik; görünüm, hissedilmesi, ses, koku ve tat • Güvenlik; Kaza ve zarar olmaması • Diğer algılamalar; marka, reklam, vb. etmenlere dayalı niteliksel algılamalar Hizmet kalite boyutları • Zaman ve zamanlılık; müşterinin bekleme zamanını en aza indirme , işi zamanında tamamlama • Bütünlük; müşterinin istediklerinin tümünün almasının sağlanması • Nezaket; müşteriye davranışın uygunluğu • İstikrar; tüm müşteriler için aynı düzeyde hizmet • Erişebilirlik ve kolaylık; hizmeti almanın kolaylığı • Doğruluk; işi her zaman doğru yapabilme • Heveslilik; olağandışı durumlara yanıt verebilme Örnekler Boyut Ürün Otomobil Hizmet Otomobil Tamiri Performans Her özelliğin çalışması Sabit fiyat, nezaket Estetik Kontrol panelinin görünümü Temiz salon, çay ikramı Özel nitelikler (uygunluk, ileri teknoloji) CD çalar, arka görüş kamerası olması Hızlı geri dönüş Güvenlik Hava yastığı olması Kırılmaz camla ayrılmış bekleme salonu Güvenilirlik Arızaların az olması Zamanında doğru işin yapılması Dayanıklılık Kullanım ömrünün uzun olması Daha uzun süre dayanması Algılanan Kalite Lüks Ödül kazanma Satış sonrası Hizmet Şikayetleri zamanında ortadan kaldırma Şikayetlerle ilgilenme 4 unsur kaliteyi belirler. • Tasarım kalitesi: İstenen ürün veya hizmet özelliklerinin tasarımda bulunması • Uygunluk kalitesi: Geliştirilen ürün veya hizmetin tasarıma uygun olması • Ürün: • Hizmet: Müşteri beklentilerinin üzerine çıkabilme Yetersiz kalite • • • • • • İşi ve müşteriyi kaybetmeye; Ödemelerin gecikmesine Verimliliğin düşmesine Maliyetlerin artmasına yol açabilir. Kalite tüm çalışanların sorumluğundadır Özellikle üst yönetimin sorumluğundadır. Kalite’nin Anlamı Kalite Üretici Bakışı Üretim Kullanıcı Bakışı Tasarım Kalitesi • Kalite Uygunluk Kalitesi • Spesifikasyonlara Uygunluk • Maliyet Karakteristikleri • Fiyat Müşteri Kullanımına Uygunluk Pazarlama Kalite Mühendisliği • Kalite mühendisliği, ürünün kalite karakteristiklerini nominal veya istenilen düzeyde tutmak amacıyla kuruluşun işlemsel, yönetsel ve mühendislik faaliyetleri kümesidir. Kaliteyi etkileyen faktörler İkiye ayrılır. • Firma içi faktörler • Firma dışı faktörler • • • • Kalitenin boyutları Tasarım kalitesi Uygunluk kalitesi Performans kalitesi Firma içi faktörler • • • • • • • Yönetim İnsan gücü Çalışanların motivasyonu Malzeme Makine Üretim yöntemleri Ölçüm araç ve gereçleri Firma dışı faktörler • • • • Tüketici özellikleri Pazarın yapısı Sermaye ve finansal kaynaklar Teknoloji Bilim Adamları • Shewart, Kontrol grafiklerini geliştirdi. • Deming, Toplam kalite yönetiminin kurucusu olarak kabul edilmektedir. Kalitenin bir yönetim sistemi olduğunu ifade eden Deming kurallarını geliştirmiştir (14 kural). • Feigenbaum, toplam kalite kontrolu kavramını geliştirmiştir. Feigenbaum’un üçgen modeli bulunmaktadır. Deming döngüsü PÜKO DÖNGÜSÜ Planla Uygula Önlem al Kontrol et Bilim Adamları • Juran, spiral modeli geliştirmiştir. • Crosby, sıfır hata kavramının öncülerindendir. • İshikawa, kalite çemberlerini geliştirmiştir. Balık-kılçığı yöntemini de geliştirmiştir. • Taguchi, deneysel tasarım ve kalite kayıp fonksiyonunu geliştirmiştir. • Ohna, tam zamanında üretim JIT modelini geliştirmiştir. Bilim Adamları • İmai, sürekli gelişme- kaizen kavramını geliştirmiştir. • Shingo, sıfır hata kavramını incelemiş ve pokayoke kavramını literatüre kazandırmıştır. • Juran, kalite üçlemesini geliştirdi. Bunlar, planlama, kontrol, iyileştirmedir. TEMEL KAVRAMLAR • Proses: Herhangi bir ürün veya hizmetin müşteri isteklerini karşılayacak kalite düzeyinde elde edilebilmesi için gerekli faaliyetler ile makine, alet/ekipman, yöntem, malzeme ve işgücü gibi faktörlerin sistematik bir şekilde planladığı sistemin tümüne denir. TEMEL KAVRAMLAR • İstatistiksel kalite kontrol, en az maliyetle, zamanında ve doğru veri üretmektir. • Örneklem dışı hata büyüklüklerinin kontrolüne yardımcı olan istatistiksel kalite kontrol yöntemleri 1. İstatistiksel proses kontrol 2. Ürün kontrol İstatistiksel proses kontrol İstatistiksel tekniklerin, bir üretim veya hizmet prosesinin olağan biçimde devam edip etmediğinin istatistiksel tekniklerle kontrolü, olağandışı bir durum varsa bunun fark edilmesi ve nedenlerinin belirlenerek ortadan kaldırılması olarak ifade edilebilir. İstatistiksel kalite kontrol İstatistiksel proses kontrolünü, örnekleme planlarını ve diğer istatistiksel teknikleri ve uygulamalarını içerir ve kalitenin sürekli olarak izlenmesine ve gerektiğinde önlem alınmasına dayanan bir yöntemdir. Muayene ve Kalite Kontrol • Herhangi bir ürünün veya hizmetin ölçü, nitelik veya performansının önceden belirlenmiş spesifikasyonlara uyup uymadığının belirlenmesi işlemine muayene denir. • Muayene kalite kontrolün bir fonksiyonudur. • Muayene işleminde geçmiş üretimin kalitesi üzerinde durulmakta iken, kalite kontrolünde gelecek üretime önem verilmektedir. Nicel ve Nitel Değişken • Birimin sahip olduğu ve bir diğerinden ayırt edilmesine yarayan özelliğe değişken denir. • Şıkları kelimelerle ifade edilebilen değişkenlere nitel değişkenler, sayılarla ifade edilebilen değişkenlere ise nicel değişkenler denir. Kalite güvence sistemi Toplam Kalite Kontrol anlayışı çerçevesinde kalite kontrol fonksiyonun etkin bir şekilde gerçekleştirilebilmesine ilişkin bilgiler sağlayan bir faaliyetler sistemidir. Kalitenin birincil boyutları • • • • • • • • Performans Tamamlayıcı özellikler Uygunluk Güvenirlik Dayanıklılık Hizmet görme yeteneği Estetik İmaj Kalitenin ikincil boyutları: • • • • Fiyat İnsan sağlığı ve güvenliği Kolay bulunabilirlik Kullanım kolaylığı Değişkenlik • Bir prosesten elde edilen ürünler, aynı yöntem ve makinelerin kullanımına rağmen kalite özellikleri birbirinin tıpa tıp aynı olmayıp her zaman birbirinden az da olsa farklılık gösterebilir. • Değişkenliğin iki ana nedeni vardır. 1. Genel nedenler 2. Özel nedenler Prosesteki değişkenlik • Prosesteki değişkenliğin hangi tür değişkenlik olduğunun belirlenmesi üretici için son derece önemlidir. Ancak, bu belirleme aşamasında iki tip hata ile karşılaşılması muhtemeldir. Bunlar; • Özel neden yokken aranıp üretim işleminde düzeltmeye gidilmesi (1. tip hata) • Özel neden varken aranmaması veya ortadan kaldırılmaması (2. tip hata) Type 1 error is % 0.27 -3σ -2 σ Ort. %99.73 +2 σ +3σ Standartlar Bir ürünün kalite özellikleriyle ilgili ürün tasarımı, üretim, ölçme vb. konularda karışıklıktan kurtulmak ve belirli bir düzen kurmak amacıyla önceden belirlenmiş kurallara denir. Spesifikasyon ve Toleranslar • Spesifikasyonlar, standartlara göre dar kapsamlı olup, standartların uygulanmasına yardımcı olan özelliklerdir. Spesifikasyonlar, standartlaştırmada kullanılan araçlardır. • Örneğin, bir milin nominal çapı ve izin verilen sapmalar için belirlenen rakamlar spesifikasyonları, bu rakamların belirlenme biçimi veya belirli kurallara uygunluğu ise standardı oluşturur. Spesifikasyon ve Toleranslar • Ürün tasarımında öngörülerek belirli sınırlar içinde olması beklenen ve sadece bu sınırlar içinde gerçekleştiği zaman kabul edilebilen sapmalara tolerans denir. • Ürün kalitesinin kabul edilebilir alt ve üst sınırlarına spesifikasyon sınırları denir. Kontrol sınırları • Kontrol sınırları ile spesifikasyon sınırları aynı değildir. Spesifikasyon sınırları, ürünün kabul edilebilir sınırlarını ifade eder ve ürün kalitesinin belirlenmesinde kullanılan bir ölçü olarak düşünülebilir. Kontrol sınırları ise prosesin kontrol altında olup olmadığının belirlenmesi için çizilen ve proses ortalaması ile proses değişkenliğine bağlı güven sınırlarıdır. Kalite Maliyetleri • Toplam kalite yönetimini, felsefe veya anlayış olarak kabul eden firmalar için, kaliteli ürünün en düşük maliyetle üretilmesi temel amaçtır. • İlk seferinde doğru yap ilkesi ile maliyetler en aza iner. Kalite Maliyetleri • İyi kaliteyi sağlamanın maliyeti - Önleme Maliyetleri - Değerlendirme Maliyetleri • Başarısızlık Maliyeti - İçsel başarısızlık maliyetleri - Dışsal başarısızlık maliyetleri Önleme Maliyetleri • Önleme maliyetleri, uygunsuzluğu önlemek için oluşan maliyetleri içerir. • Bunlar, genellikle,ürünün ilk seferde doğru olarak yapımı için gerekli gayretler ile ilgili maliyetleri içerir. • Önleme maliyetlerinin önemli alt grupları şunlardır: - Kalite planlama ve mühendislik - Yeni ürünlerin gözden geçirilmesi - Ürün ve süreç tasarımı - Süreç kontrol - Eğitim - Kalite verilerinin toplanması ve analizi Değerlendirme Maliyetleri • • • • Muayene ve giren malzemenin testi Ürün muayene ve testi Tüketilen malzemeler ve hizmetler Test donatımlarının doğruluklarının sağlanması ve bakımı İçsel Hata Maliyetleri • İçsel hata maliyetleri, ürünlerin, bileşenlerin (components), malzemelerin ve hizmetlerin kalite ihtiyaçlarını karşılamadığı zaman oluşurlar • Bu hata, ürün müşteriye teslim edilmeden önce keşfedilir • İçsel hata maliyetleri, üründe kusurların bulunmaması halinde yok olurlar. İçsel Hata Maliyetleri (Devam) Bu maliyetlerin alt kategorileri şunlardır: • Hurda • Yeniden işleme • Yeniden test etme • Hata analizi • Aksaklık (down-time) süresi • Getiri kayıpları • Değer düşüklüğü Dışsal Hata Maliyetleri • Dışsal hata maliyetleri, ürünün müşteriye gönderildikten sonra, tatminkar düzeyde işlevini yerine getirmediği durumda oluşur • Bu maliyetler, ürünün her birimi ihtiyaçlarına veya belirtimlerine (spesifikasyonlarına) uygun hale getirildiğinde yok olurlar Dışsal Hata Maliyetleri (Devam) Temel alt kategorileri şunlardır: • Şikayetlerin giderilmesi • Geri gönderilen ürün/malzeme • Garanti belgesi masrafları • Yükümlülük maliyetleri • Dolaylı maliyetler Kalite Endeksleri • İşçilik Endeksi: kalite Maliyeti / işgücü saati • Maliyet Endeksi: kalite maliyeti / imalat maliyeti • Satışlar Endeksi: kalite maliyeti / satışlar • Üretim Endeksi: kalite maliyeti / üretilen birimler Kalite Endeks Örneği Kalite maliyetleri Önleme Değerlendirmel İçsel hata Dışsal hata Toplam Muhasebe ölçümleri Satışlar İmalat maliyetleri 1996 1997 1998 1999 $ 27,000 155,000 386,400 242,000 $ 810,400 41,500 122,500 469,200 196,000 829,200 74,600 113,400 347,800 103,500 639,300 112,300 107,000 219,100 106,000 544,400 $ 4,360,000 1,760,000 4,450,000 1,810,000 5,050,000 1,880,000 5,190,000 1,890,000 Kalite Endeksi Toplam kalite maliyetleri * 100 / baz $810,400 * 100 / 4,360,000 = 18.58 Yıl 1996 1997 1998 1999 Satışlar 18.58 18.63 12.66 10.49 Maliyet 46.04 45.18 34.00 28.80 Kalite ve Verimlilik • Verimlilik= Çıktı / Girdi • Az sayıda kusurlular, çıktıyı arttırır • Kalite iyileştirme, girdileri azaltır Getiri ve Verimliliğin Ölçümü Y = (I)(%G) + (I)(1-%G)(%R) Y = getiri I = üretime başlıyan birimlerin sayısı % G = kusursuz birimlerin yüzdesi % R = yeniden işlenen kusurlu birimlerin yüzdesi Ürün Getiri Örneği” Günde 100 motorla üretime başla Birimlerin 80%’i kusursuz Düşük kalitedeki birimlerin 50%’si yeniden işlenebilmektedir Y = (I)(%G) + (I)(1-%G)(%R) Y = 100 (0.80) + 100 (1- 0.80) (0.50) = 90 motors Ürün Maliyeti direct mfg costinput unit rework costreworked units = yield K dI K r R = Y where K d direct manufacturing cost Kr rework cost per unit Y yield I = input R reworked units Ürün Maliyet Örneği Dolaysız imalat maliyeti = $30, yeniden işleme maliyeti = $12 100, üretime başlayan motor sayısı, 20%, kusurlu motor yüzdesi Kusurlu motorların 50%’si yeniden işlenebilir I K R K Ürün maliyeti = d r Y $30100 $1210 $34.67 = 90 motor Çok Aşamalı Ürün Getirisi Y = (I) (%g1)(%g2)...(%gn) I = giren parti büyüklüğü %gi = aşama i deki kusursuz ürünlerin yüzdesi Çok Aşamalı Süreç Getiri Örneği Motorlar 4 aşamalı süreçte üretilmektedir. Üretime 100 motorla başlandığında sürecin getirisini hesaplayınız. Aşama Kusursuz ürün yüzdesi 1 0.93 2 0.95 3 0.97 4 0.92 Y = (I) (%g1)(%g2)...(%gn) = (100)(0.93)(0.95)(0.97)(0.92) Y = 78.8 motor 100 Kusursuz Ürün Üretimi Çıktısı için Gerekli Girdi Sayısı Y I= %g1 %g 2 %g 3 %g 4 100 I= 0.930.950.97 0.92 126.8 motor Kalite Verimlilik Oranı (KVO) • Verimlilik ve kalite maliyetlerini içerir • Artar - Eğer işleme veya yeniden işleme maliyetleri azalırsa - Eğer süreç getirisi artarsa QPR İyi kalitedeki ürünler (100) (girdiler) (üretim maliyeti) + (kusurlu ürünler)(yeniden işşlem maliyeti) KVO Örneği Dolaysız maliyet = $30/birim, yeniden işleme = $12/birim Günde 100 motorla üretime başla Ürünlerin %80’i kusursuz, kusurlu birimlerin %50’si yeniden işlenebilir olduğunda kuruluş aşağıdaki 4 değişiklik üzerinde çalışmaktadır 1 - Günlük üretimin 200’e çıkarılması 2 - Süreç maliyetinin $26’a ve yeniden işleme maliyetinin de $10’a indirilmesi 3 - Getirinin 95%’e çıkarılması 4 - 2 ve 3. ün karışımı KVO ÖRNEĞİ 80 10 QPR (100) 2.88 (100)($30) + (10)($12) • Durum 1 – I’yı artırmanın bir etkisi olmadı 160 20 QPR (100) 2.88 (200)($30) + (20)($12) • Durum 2 – Maliyetin azaltılması QPR’ı artırdı QPR 80 10 (100) 3.33 (100)($26) + (10)($10) • Durum 3 – Getirinin artması QPR’ı artırdı QPR 95 2.5 (100) 3.21 (100)($30) + (2.5)($12) • Durum 4 – Maliyetlerin düşmesi ve getirinin artması en iyi durumu verdi 95 2.5 QPR (100) 3.71 (100)($26) + (2.5)($10) İstatistiksel Kalite Kontrol Teknikleri İstatistiksel Proses (Süreç) Kontrol • İstatistiksel Süreç Kontrol bir araçlar topluluğu olup birlikte kullanıldığında değişkenliği azaltır ve süreci kararlı kılar. • İstatistiksel Süreç Kontrolün nihai amacı, nedeni bulunabilir sorunların tanımlanmasıyla süreçlerdeki değişkenliğin elimine edilmesi veya azaltılmasıdır. İstatistiksel Proses (Süreç) Kontrol • İstatistiksel Süreç Kontrolün en önemli amacı, nedeni bulunabilir sorunların tanımlanmasıyla veya prosesteki değişimin özel nedenlerini ortadan kaldırılması, süreçlerdeki değişkenliğin elimine edilmesi veya azaltılmasıdır. • Herhangi bir proses, sadece genel nedenlerin etkisiyle değişim gösteriyorsa , bu prosesin istatistiksel olarak kontrol altında çalıştığı söylenir. Kontrol Grafikleri • Kontrol grafikleri, proseslerden elde edilen ürünlerin gözlem sonuçlarına ilişkin değişimleri ortaya koyar. • Kontrol grafikleri görsel bir nitelik taşır ve prosesteki değişkenliğin kolayca algılanmasına yardımcı olur. • Prosesleri kontrol altına almak, oluşacak kusurları zamanında ve ortaya çıkmadan önce önlemek, prosesleri iyileştirmek ve geliştirmek amacıyla kontrol grafikleri kullanılır. Kontrol Şemalarının İstatistiksel Yapısı Örnek Kalite Özelliği Üst Kontrol Sınırı Merkez çizgisi Alt Kontrol Sınırı Örnek Sayısı veya Zamanı Tipik Bir Kontrol Şeması Kontrol Grafikleri Kontrol grafikleri, üretimden belirli ve eşit zaman aralıklarında alınan örneklerden elde edilen ölçüm değerlerinin zaman içerisindeki değişimlerinin gösterildiği grafiklerdir. • Merkez Çizgi; kalite özelliğinin ortalama değeri (hedeflenen değer) • Üst Kontrol Sınırı • Alt Kontrol Sınırı Kontrol Grafikleri • Merkez çizgi, çeşitli zaman aralıklarında prosesten alınan ürünlere ilişkin gözlem değerlerinin ortalamasını gösteren çizgidir. • Üst ve alt kontrol sınırları, prosesten alınan ürünlere ilişkin gözlem değerlerinden hareketle hesaplanan ve orta çizgiye eşit uzaklıkta olan (±3σ) olan sınırlardır. Normal Dağılım İlk olarak Shewhart tarafından geliştirilen kontrol grafiklerinin temel yapısı normal dağılıma dayanır. Değişken değerlerinin; • ±2σ’lık alanda bulunması olasılığı %95,45 • ±3σ’lık alanda bulunması olasılığı %99,73’tür. • Seçilen herhangi bir birimin ±3σ’lık alanın dışında kalması olasılığı (1-0,9973)=0,0027’dir. -3σ -2σ Ortalama %95.45 %99.73 +2σ +3σ Değişkenlik • Bir prosesten elde edilen ürünler, aynı yöntem ve makinelerin kullanımına rağmen kalite özellikleri birbirinin tıpa tıp aynı olmayıp her zaman birbirinden az da olsa farklılık gösterebilir. • Değişkenliğin iki ana nedeni vardır. 1. Genel nedenler 2. Özel nedenler Kontrol Grafikleri • Genel nedenlerin etkisiyle ortaya çıkan değişkenlik kontrol sınırları içinde kalır. • Özel nedenlerin varlığı prosesin kontrol dışına çıkması sonucunu yaratır. Kontrol Grafikleri • Kontrol sınırları arasında kalan bir nokta sürecin kontrol altında olduğunu gösterir. • Herhangi bir şey yapmak gerekmez • Kontrol sınırları dışında kalan bir nokta sürecin kontrol altında olmadığını gösterir • Nedeni bulunabilir sorunların bulunması ve elimine edilmesi için araştırılma ve düzeltici eylemlerin yapılmasını gerektirir. Kontrol Grafikleri • Shewart tarafından geliştirilmiştir. • Küçük örneklem hacimlerinde bile anakütle parametreleri hakkında tutarlı tahminler vermektedir. • Her kontrol grafiği tek bir süreci çözümlemek üzere kullanılır. • Herhangi bir ürünün kalite özelliklerinin değerlendirme şekli, hangi tür kontrol grafiğinin kullanılacağını belirler. Örnek Büyüklüğü ve Örnekleme Frekansı Ortalama Koşum Uzunluğu • Ortalama koşum uzunluğu (run length) (ARL) uygun örnek büyüklüğünün ve örnekleme frekansının belirlenmesi açısından çok önemlidir. • p = süreç kontroldeyken bir noktanın kontrol sınırları dışına düşme olasılığı olsun. 1 ARL p Örnek Büyüklüğü ve Örnekleme Frekansı Örnek • Ortalamadan 3 standart sapma uzaklığında kontrol sınırları olan bir problem düşünün.Kontrol sınırları dışında kalan noktaların olasılığı yine 0.0027 (yani, p = 0.0027). Dolayısıyla, ortalama koşum uzunluğu; 1 ARL 370 0.0027 Örnek Büyüklüğü ve Örnekleme Frekansı ARL bize ne söylüyor? • Ortalama koşum uzunluğu bize örnek alma zamanı uzunluğunu verir, ki kontrol sınırları dışında kalacak bir noktadan önce örnek alma işlemi yapılabilsin. Bu değer ne kadar büyükse o kadar iyidir. • Bizim problemimiz için, süreç kontrol altında olsa bile ortalama olarak her 370 örnekte bir kontrol dışı sinyali yaratılacaktır. Örnek Büyüklüğü ve Örnekleme Frekansı Ortalama Sinyal Zamanı • Bazen kontrol şemalarının performansını ortalama sinyal zamanı (ATS) ile ifade etmek daha uygun bir yoldur. Yani örnekler sabit aralıklar ile alınır, h saat aralığı ile. ATS ARL(h) Örnek Büyüklüğü ve Örnekleme Frekansı • (hard-bake) sertlik fırınlama sürecini düşünelim. Eğer süreç ortalaması 1.725 mikron ise, kontrol sınırları arasında kalma olasılığı yaklaşık olarak 0.50 olur. Dolayısıyla, p 0.50 olur ve kontrol dışı ortalama koşum uzunluğu (ARL); l Eğer h=1 saat ise, ortalama değişim zamanı şöyle saptanır: Örnek Büyüklüğü ve Örnekleme Frekansı • l Bunun kabul edilemez olduğunu varsayalım. Bu durumun üstesinden gelmenin bir yolu daha sık örnek almaktır. Örneğin, eğer biz yarım saatte bir örnek alırsak, bu durumda ortalama sinyal zamanı ATS = ARL1 h = 2(1/2) = 1 olur. İkincisi, olasılık örnek büyüklüğünü arttırmaktır. Örneğin, n=10 olursa, süreç ortalaması 1.725 mikron olduğunda xbar’ın kontrol sınırları içine düşme olasılığı yaklaşık olarak 0.1 mikron olacaktır, dolayısıyla p = 0.9 olacaktır. Yani ARL1 aşağıdaki gibi olacaktır Veri Tipleri • Nicel, Ölçülebilen özellikler (değişken nicelikler): Sayısal olarak ölçülebilir ve sürekli bir ölçek üzerinde rakamsal olarak ifade edilebilir özelliklerdir. Örnek; uzunluk, hacim, ağırlık, sıcaklık vb. Kalite özelliğini tasvir etmede merkezi eğilim ölçülerinden aritmetik ortalama, dağılım ölçülerinden standart sapma ve açıklık kullanılır. • Nitel, Ölçülemeyen özellikler (vasıflar): Sayısal olarak ölçülemeyen ancak kusurlu-kusursuz olarak sınıflandırılabilen özelliklerdir. Kontrol Grafikleri • • • • Kontrol grafikleri ikiye ayrılır. Nicel Kontrol Grafikleri (Variables) Nitel Kontrol Grafikleri (Attributes) Alternatif kontrol grafikleri • Shewhart kontrol grafikleri süreç kontrolünde veriler durağan ve ilişkisiz olduğunda en etkili grafiklerdir. Nicel Kontrol Grafikleri 1. Ortalama ve Aralık Kontrol Grafiği 2. Ortalama ve Standart Sapma Kontrol Grafiği 3. Bireysel Gözlem (I) ve Hareketli Aralık Kontrol Grafiği (MR) Nitel Kontrol Grafiği 1. 2. 3. 4. Kusurlu oranı (p) kontrol grafiği Kusurlu sayısı (np) kontrol grafiği Kusur sayısı (c) kontrol grafiği Birim başına kusur sayısı (u) kontrol grafiği Alternatif kontrol grafikleri 1. Kümülatif toplam (CUSUM) kontrol grafiği 2. Hareketli ortalama (MA) kontrol grafiği 3. Üstel ağırlıklı Hareketli ortalama (EWMA) kontrol grafiği Değişkenler İçin Kontrol Grafikleri • X-ortalama grafiği Süreçte işlem gören ya da çıkan parçaların merkezi eğilimlerini inceler. • Açıklık (R) grafiği Kitlenin dağılışında zaman içinde bir değişiklik olup olmadığını belirler. • Standart sapma (S) grafiği Kitlenin zaman içindeki dağılışını inceleyen bir başka grafik türüdür. Uygulamada X-ort. grafiği S veya R grafiği ile birlikte kullanılır. Belirtici İstatistikler n • Ortalama: – Veri setinin merkezi eğiliminin bir ölçüsüdür. x • Standart Sapma: – Dağılımdaki her bir değerin ortalamaya göre ne uzaklıkta olduğunu gösteren bir ölçüdür. • Açıklık: – Bir başka dağılım ölçüsüdür. – Veri setindeki en büyük ve en küçük değer arasındaki farkı ifade eder. x i i 1 n x X n i 1 2 i n 1 R= Xmax- Xmin X-ort. ve R Kontrol Grafikleri Üretimden alınan örneklerin hacimleri 10’dan küçük olduğunda (n<10) X-ort. grafiği ile birlikte R grafiğinin kullanılması tercih edilir. Üretimin doğru bir görünüşünü elde edebilmek için genellikle 4 veya 5 birimden oluşan 20-25 alt grup örneklem olarak seçilir. X-ort. ve R grafiklerinde kontrol sınırları standartların belli olması ve olmaması durumlarına göre ayrı ayrı belirlenir. X-ort. ve R Kontrol Grafikleri • Standartların belli olması durumu Bu durumda anakütle ortalaması µ ve standart sapması σ bilinmektedir. X-ort grafiği ÜKS= µ+Aσ MÇ= µ AKS= µ-Aσ R grafiği ÜKS= D2σ MÇ= d2σ AKS= D1σ X-ort. ve R Kontrol Grafikleri • Standartların belli olmaması durumu n birimlik k tane örnek (alt grup) için; k X X i 1 i k X-ort grafiği ÜKS X A2 R MÇ X AKS X A2 R R R i k R grafiği ÜKS RD4 MÇ R AKS RD3 X-ort. ve R Kontrol Grafikleri • Bir üretim prosesinden çeşitli zaman aralıklarında rasgele olarak 5’er birimlik 20 örnek alınmıştır. (n=5, k=20) • Anakütle ortalaması ve standart sapması bilinmemektedir (standartlar belli değil). • Örneklere ait ortalama ve açıklık değerleri aşağıdaki gibidir. Örnek no 1 2 3 4 5 6 7 8 9 10 X-Ort 170,6 171,2 172 173,6 173 178,8 177,2 181,6 177,8 178,4 R 23 8 22 12 7 8 16 6 6 12 Örnek no 11 12 13 14 15 16 17 18 19 20 X-Ort 180,8 175,8 179,6 178,6 180,2 179,6 177,8 178,6 181,2 178,2 R 9 8 7 6 5 6 10 9 7 9 X-ort. ve R Kontrol Grafikleri X = (170,6+171,2+...+178,2)/20 = 177,23 R = (23+8+...+9)/20 = 9,85 Kontrol Sınırları; X-ort Grafiği ÜKS = 177,23+(0,58)(9,85) = 182,91 MÇ = 177,23 AKS = 177,23-(0,58)(9,85) = 171,55 R Grafiği ÜKS = (2,12)(9,85) = 20,83 MÇ = 9,85 AKS = (0)(9,85) =0 Kontrol Sınırları Çarpanları Kontrol Sınırları Çarpanları Ortalama Standart Sapma Açıklık Örneklem genişliği (n) A A2 A3 C4 B3 B4 B5 B6 d2 D1 D2 D3 D4 2 2,12 1,88 2,66 0,798 0 3,27 0 2,61 1,13 0 3,69 0 3,27 3 1,73 1,02 1,95 0,886 0 2,57 0 2,28 1,69 0 4,36 0 2,58 4 1,5 0,73 1,63 0,921 0 2,27 0 2,09 2,1 0 4,7 0 2,28 5 1,34 0,58 1,43 0,94 0 2,09 0 1,96 2,33 0 4,92 0 2,12 6 1,23 0,48 1,29 0,952 0,03 1,97 0,03 1,87 2,53 0 5,08 0 2 7 1,13 0,42 1,18 0,959 0,12 1,88 0,11 1,81 2,7 0,21 5,2 0,08 1,93 8 1,06 0,37 1,1 0,965 0,19 1,82 0,18 1,75 2,85 0,31 5,31 0,14 1,86 9 1 0,34 1,03 0,969 0,24 1,76 0,23 1,71 2,97 0,55 5,34 0,18 1,82 10 0,95 0,31 0,98 0,973 0,28 1,72 0,28 1,67 3,08 0,69 5,47 0,22 1,78 11 0,91 0,29 0,93 0,975 0,32 1,68 0,31 1,64 3,17 0,81 5,53 0,26 1,74 12 0,87 0,27 0,89 0,978 0,35 1,65 0,35 1,61 3,26 0,92 5,59 0,28 1,72 13 0,83 0,25 0,85 0,979 0,38 1,62 0,38 1,59 3,34 1,03 5,65 0,31 1,69 14 0,8 0,24 0,82 0,981 0,41 1,59 0,4 1,56 3,41 1,12 5,69 0,33 1,67 15 0,78 0,22 0,79 0,982 0,43 1,57 0,42 1,54 3,47 1,21 5,74 0,35 1,65 X-ort. ve R Kontrol Grafikleri X Bar-Control Chart R-Control Chart 184,39 30 25 180,81 20 177,23 15 UKS= 20,83 olcumler 10 Ort = 9,85 UKS = 182,91 173,65 Ort = 177,23 170,07 AKS = 171,55 1 3 2 5 4 Sigma level: 3 7 6 9 8 11 10 13 12 15 14 17 16 AKS = ,00 0 olcumler 1 19 18 5 20 3 2 5 4 Sigma level: 3 7 6 9 8 11 10 13 12 15 14 17 16 19 18 20 XR ÇİZELGESİ ÖRNEK 1/7 TARİH ÖRNEK DEĞERLERİ X1 X2 X3 X X R X4 MAYIS 1 2 3 4 5 6 Geri Dön XR ÇİZELGESİ ÖRNEK 2/7 TARİH ÖRNEK DEĞERLERİ X1 X2 X3 X4 MAYIS 1 65 64 67 64 2 63 66 65 63 3 62 67 64 66 4 63 65 67 65 5 58 64 61 59 6 59 60 64 58 XX R Geri Dön XR ÇİZELGESİ ÖRNEK 3/7 TARİH ÖRNEK DEĞERLERİ XX X1 X2 X3 X4 MAYIS 1 65 64 67 64 65 2 63 66 65 63 64 3 62 67 64 66 64 4 63 65 67 65 65 5 57 63 61 59 62 6 59 60 64 58 61 R Geri Dön XR ÇİZELGESİ ÖRNEK 4/7 X 63,3 TARİH R 4,33 ÖRNEK DEĞERLERİ XX R X1 X2 X3 X4 MAYIS 1 65 64 67 64 65 3 2 63 66 65 63 64 3 3 62 67 64 66 64 5 4 63 65 67 65 65 4 5 57 63 61 59 62 6 6 59 60 64 58 61 6 X-ort. ve R Kontrol Grafikleri • Standartların belli olmaması durumu n birimlik k tane örnek (alt grup) için; k X X i 1 i k X-ort grafiği ÜKS X A2 R MÇ X AKS X A2 R = R R i k R grafiği ÜKS RD4 MÇ R AKS RD3 Kontrol Sınırları Çarpanları Kontrol Sınırları Çarpanları Ortalama Standart Sapma Açıklık Örneklem genişliği (n) A A2 A3 C4 B3 B4 B5 B6 d2 D1 D2 D3 D4 2 2,12 1,88 2,66 0,798 0 3,27 0 2,61 1,13 0 3,69 0 3,27 3 1,73 1,02 1,95 0,886 0 2,57 0 2,28 1,69 0 4,36 0 2,58 4 1,5 0,73 1,63 0,921 0 2,27 0 2,09 2,1 0 4,7 0 2,28 5 1,34 0,58 1,43 0,94 0 2,09 0 1,96 2,33 0 4,92 0 2,12 6 1,23 0,48 1,29 0,952 0,03 1,97 0,03 1,87 2,53 0 5,08 0 2 7 1,13 0,42 1,18 0,959 0,12 1,88 0,11 1,81 2,7 0,21 5,2 0,08 1,93 8 1,06 0,37 1,1 0,965 0,19 1,82 0,18 1,75 2,85 0,31 5,31 0,14 1,86 9 1 0,34 1,03 0,969 0,24 1,76 0,23 1,71 2,97 0,55 5,34 0,18 1,82 10 0,95 0,31 0,98 0,973 0,28 1,72 0,28 1,67 3,08 0,69 5,47 0,22 1,78 11 0,91 0,29 0,93 0,975 0,32 1,68 0,31 1,64 3,17 0,81 5,53 0,26 1,74 12 0,87 0,27 0,89 0,978 0,35 1,65 0,35 1,61 3,26 0,92 5,59 0,28 1,72 13 0,83 0,25 0,85 0,979 0,38 1,62 0,38 1,59 3,34 1,03 5,65 0,31 1,69 14 0,8 0,24 0,82 0,981 0,41 1,59 0,4 1,56 3,41 1,12 5,69 0,33 1,67 15 0,78 0,22 0,79 0,982 0,43 1,57 0,42 1,54 3,47 1,21 5,74 0,35 1,65 XR ÇİZELGESİ ÖRNEK 5/7 Geri Dön X-ort. ve S Kontrol Grafikleri Üretimden alınan örneklerin büyüklükleri 10 dan fazla (n>10) olduğunda R grafiği yerine S grafiği kullanılır. n>10 durumunda R’nin etkinliği, dolayısıyla güvenilirliği azaldığından dağılım ölçüsü olarak standart sapma tercih edilir. X-ort. ve S grafikleri için de standartların belli olması ve olmaması durumu söz konusudur. X-ort. ve S Kontrol Grafikleri • Standartların belli olması durumu Anakütle ortalaması µ ve standart sapması σ olmak üzere; X-ort grafiği ÜKS= µ+Aσ MÇ= µ AKS= µ-Aσ S grafiği ÜKS= B6σ MÇ= C4σ AKS= B5σ X-ort. ve S Kontrol Grafikleri • Standartların belli olmaması durumu n birimlik k tane örnek için; =S S i k X-ort grafiği ÜKS= X+A3 MÇ= X AKS= X -A3 S n n 1 S grafiği ÜKS= B4 MÇ= AKS= B3 X-ort. ve S Kontrol Grafikleri • • • Bir üretim prosesinden 10’ar birimlik 15 örnek şansa bağlı olarak alınmıştır. (n=10, k=15). Bu örneğin gerçekleştirilmesi için n=10 durumunda ortalama ve standart sapma grafiği çizilmiştir. Normal şartlar altında, n=10 olduğunda ortalama aralık kontrol grafiği çizilir. Örneklerin alındığı anakütlenin ortalamasının 54 ve standart sapmasının 2 olduğu bilinmektedir (standartlar belli: µ=54, σ=2). Örneklere ait ortalama ve standart sapma değerleri aşağıdaki gibidir. Örnek no 1 2 3 4 X-Ort 53,9 53,8 53,9 54,3 S 2,47 2,49 3,07 1,34 5 6 7 8 9 10 53,8 53,5 53,7 55,5 54,8 54,1 1,81 1,58 1,16 1,65 1,14 1,45 Örnek no 11 12 13 14 15 X-Ort 55,1 55 54,6 53,5 54 S 1,85 2,31 0,84 1,51 2,16 X-ort. ve S Kontrol Grafikleri X-ort Grafiği ÜKS= µ+Aσ = 54+(0,95)2 =55,9 MÇ= µ= 54 AKS= µ-Aσ = 54-(0,95)2 = 52,1 S Grafiği ÜKS= B6σ =(1,67)2 =3,34 MÇ= C4σ =(0,973)2 =1,95 AKS= B5σ =(0,28)2 = 0,56 Kontrol Sınırları Çarpanları Kontrol Sınırları Çarpanları Ortalama Standart Sapma Açıklık Örneklem genişliği (n) A A2 A3 C4 B3 B4 B5 B6 d2 D1 D2 D3 D4 2 2,12 1,88 2,66 0,798 0 3,27 0 2,61 1,13 0 3,69 0 3,27 3 1,73 1,02 1,95 0,886 0 2,57 0 2,28 1,69 0 4,36 0 2,58 4 1,5 0,73 1,63 0,921 0 2,27 0 2,09 2,1 0 4,7 0 2,28 5 1,34 0,58 1,43 0,94 0 2,09 0 1,96 2,33 0 4,92 0 2,12 6 1,23 0,48 1,29 0,952 0,03 1,97 0,03 1,87 2,53 0 5,08 0 2 7 1,13 0,42 1,18 0,959 0,12 1,88 0,11 1,81 2,7 0,21 5,2 0,08 1,93 8 1,06 0,37 1,1 0,965 0,19 1,82 0,18 1,75 2,85 0,31 5,31 0,14 1,86 9 1 0,34 1,03 0,969 0,24 1,76 0,23 1,71 2,97 0,55 5,34 0,18 1,82 10 0,95 0,31 0,98 0,973 0,28 1,72 0,28 1,67 3,08 0,69 5,47 0,22 1,78 11 0,91 0,29 0,93 0,975 0,32 1,68 0,31 1,64 3,17 0,81 5,53 0,26 1,74 12 0,87 0,27 0,89 0,978 0,35 1,65 0,35 1,61 3,26 0,92 5,59 0,28 1,72 13 0,83 0,25 0,85 0,979 0,38 1,62 0,38 1,59 3,34 1,03 5,65 0,31 1,69 14 0,8 0,24 0,82 0,981 0,41 1,59 0,4 1,56 3,41 1,12 5,69 0,33 1,67 15 0,78 0,22 0,79 0,982 0,43 1,57 0,42 1,54 3,47 1,21 5,74 0,35 1,65 X-ort. ve S Kontrol Grafikleri X Ortalama Grafiği 57 56 55 54 53 52 51 S Grafiği Ortalama ÜKS MÇ AKS 0 2 4 6 8 10 12 14 16 Örnek No 3,5 3 2,5 2 1,5 1 0,5 0 S.sapma ÜKS MÇ AKS 0 2 4 6 8 10 12 14 16 Örnek No Özellikler (Nitel) İçin Kontrol Grafikleri • p (kusurlu oranı) grafiği Prosesten alınan örneklerin kusurlu oranlarını inceleyen grafik türüdür. • Stabilize p grafiği Örnek ölçümlerinin eşit olmaması durumunda kullanılan grafiktir. • np (kusurlu sayısı) grafiği Kusurlu sayılarıyla oluşturulan grafiklerdir. • c (örnek başına kusur sayısı) grafiği Her bir örnek için toplam kusur sayıları dikkate alınarak hazırlanan kontrol grafiğidir. • u (birim başına kusur sayısı) grafiği Tek bir birimdeki hataları incelemek için kurulan kontrol grafiğidir. p (kusurlu oranı) Grafiği p grafiklerinde, oran söz konusu olduğu için, üretim sürecinden daha büyük hacimli örnekler alınmalıdır. Kriter olarak; np>1 olacak şekilde n’in tespit edilmesi tavsiye edilir. Örneğin, kusurlu oranı p=0.05 ise np>1 durumunun sağlanması için n>20 olmasına dikkat edilmelidir. Anakütle kusurlu oranı belli değilse şansa bağlı olarak alınacak yeterince büyük bir örnekteki kusurlu oranı esas alınarak örnek büyüklükleri ayarlanır. p (kusurlu oranı) Grafiği Birinci örnekteki kusurlu sayısı x1, ikinci örnekteki x2,.., k’inci örnekteki kusurlu sayısı xk olmak üzere bu örneklerdeki kusurlu oranları; p1=x1/n, p2=x2/n, ......, pk=xk/n şeklindedir. Ortalama kusurlu oranı; p = (p1+p2+...+pk)/ k Kontrol sınırları; ÜKS p 3 p(1 p) n MÇ = p AKS p 3 p(1 p) n p (kusurlu oranı) Grafiği • Bir üretimden 50’şer birimlik 20 örnek alınmıştır. (n=50, k=20) • Anakütlenin kusurlu oranı bilinmemektedir (standart belli değil). • Her bir örnekteki kusurlu sayıları ve kusurlu oranları aşağıdaki şekilde tespit edilmiştir. Örnek no 1 2 3 4 5 6 7 8 9 10 K. sayısı 9 4 5 16 10 15 7 9 5 12 K. oranı 0.18 0.08 0.1 0.32 0.2 0.3 0.14 0.18 0.1 0.24 Örnek no 11 12 13 14 15 16 17 18 19 20 Toplam K. sayısı 10 17 14 19 12 8 10 6 12 8 208 K. oranı 0.2 0.34 0.28 0.38 0.24 0.16 0.2 0.12 0.24 0.16 4.16 p (kusurlu oranı) Grafiği Birinci örnekteki kusurlu oranı; p1=9/50=0.18 İkinci örnekteki kusurlu oranı; p2=4/50=0.08 . . Ortalama kusurlu oranı; p = (0.18+0.08+...+0.16)/20 = 4.16/20= 0.21 Kontrol sınırları; ÜKS = 0.21+3 MÇ = 0.21 = 0.38 (0.21)(0.79) / 50 AKS = 0.21-3 = 0.04 (0.21)(0.79) / 50 p (kusurlu oranı) Grafiği p-Control Chart ,4 ,3 ,2 KUSURLU UKS = ,38 ,1 M C = ,21 0,0 AKS = ,04 1 3 2 5 4 Sigma level: 3 7 6 9 8 11 10 13 12 15 14 17 16 19 18 20 np (kusurlu sayısı) Grafiği np grafiklerinde kusurlu oranları yerine kusurlu sayıları kullanılır. Örnek oranlarının hesaplanmasına gerek duyulmadığı için p grafiğine göre daha kolay gelebilmektedir. Şekil olarak p grafiğinin aynısıdır. Sadece dik eksen kusurlu oranı yerine kusurlu sayısını temsil eder. x p= Ortalama kusurlu oranı; nk Kontrol sınırları; ÜKS = np +3 n p(1 p) MÇ = n p AKS = n p -3 n p(1 p) np (kusurlu sayısı) Grafiği • Bir piston imalathanesinin üretiminden 100’er birimlik 15 örnek alınmıştır. (n=100, k=15) • Anakütlenin kusurlu oranı bilinmemektedir (standart belli değil). • Her bir örnekteki kusurlu sayıları aşağıdaki gibidir. Örnek no 1 2 3 4 5 6 7 8 9 10 Kusurlu sayısı 8 16 4 0 6 2 8 6 4 5 Örnek no 11 12 13 14 15 Toplam Kusurlu sayısı 5 0 7 8 14 93 np (kusurlu sayısı) Grafiği Ortalama kusurlu oranı; p = 93 =0.062 100 x15 Kontrol sınırları; ÜKS = 100(0.062)+3 100(0.062)(0.938) = 13.43 MÇ = 100(0.062) = 6.20 AKS = 100(0.062)-3 100(0.062)(0.938) = -1.03= 0 np (kusurlu sayısı) Grafiği np-Control Chart 20 15 10 kusur UKS = 13,43 5 M C = 6,20 0 AKS = ,00 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 orne k no Sigma level: 3 c Kontrol Grafiği (Örnek başına kusur sayısı) c grafiklerinde üretilen birimlerin kalite kontrolünde, her bir örnekte rastlanan toplam kusur sayıları esas alınır. Örnek, tek bir parça ürün ya da parçanın bir kısmı olabilir. k; alt grup sayısı olmak üzere her bir alt grupta n=1 olma durumu söz konusudur. k Ortalama kusur sayısı; Kontrol sınırları; c c i 1 k ÜKS c 3 c MÇ = c AKS c 3 c i c Kontrol Grafiği (Örnek başına kusur sayısı) • Bir firmanın ürettiği buzdolaplarından 20 tanesi alınmıştır. (k=20) • Geçmiş verilere dayanılarak hesaplanmış bir c değeri yoktur (standart belli değil). • Her bir buzdolabındaki toplam kusur sayısı tespit edilerek aşağıdaki tablo düzenlenmiştir. Örnek no 1 2 3 4 5 6 7 8 9 10 Kusur sayısı 4 3 5 7 2 8 1 4 3 5 Örnek no 11 12 13 14 15 16 17 18 19 20 Kusur sayısı 6 6 3 1 2 2 5 4 0 3 c Kontrol Grafiği (Örnek başına kusur sayısı) Ortalama kusur sayısı; c = ∑ci / k =(4+3+5+...+3)/20 = 3,7 Kontrol sınırları; ÜKS = 3,7+3 3,7 = 9,47 MÇ =3,7 AKS = 3,7-3 3,7 = -2,07 =0 c kontrol Grafiği (Örnek başına kusur sayısı) c-Control Chart 10 8 6 4 kusur UKS = 9,47 2 M C = 3,70 0 AKS = ,00 1 3 2 5 4 Sigma level: 3 7 6 9 8 11 10 13 12 15 14 17 16 19 18 20 u-Kontrol Grafiği (Birim başına kusur sayısı) u grafiklerinde her bir birimde rastlanan ortalama kusur sayıları işlenir. Buna ek olarak bazı durumlarda alt gruplar farklı sayılarda birimlerden oluşabilirler. Alt grupları oluşturan birim sayıları farklılık gösterdiğinde izlenebilecek iki yol vardır: – Ortalama bir n değeri hesaplamak, – Değişen n değerlerine göre ayrı ayrı kontrol sınırları belirlemek. u-Kontrol Grafiği (Birim başına kusur sayısı) Uygulamalar için birim başına gerçek hata sayısı u bilindiğinde (standart belli iken), bu değer kontrol sınırlarını hesaplamada kullanılır. Bilinmediğinde ise birim başına ortalama hata sayısı (ū) hesaplanır. U = Kontrol sınırları; c n ÜKS u 3 u n MÇ u AKS u 3 u n u-Kontrol Grafiği (Birim başına kusur sayısı) • Bir dokuma fabrikasında günlük üretilen top kumaşlardaki kusurları belirlemek amacıyla %100 muayene yapılmıştır. • 10 günlük süreçte tespit edilen kusurlu kumaş topu sayıları ve bunlardaki kusur sayıları aşağıdaki gibidir. • Gerçek kusur sayısı olan u değeri bilinmemektedir (standart belli değil). Gün 1 2 3 4 5 6 7 8 9 10 Kumaş topu s.(n) 20 20 20 21 22 22 23 33 23 21 Kusur sayısı (c) 27 23 30 28 29 31 37 29 36 27 u-Kontrol Grafiği (Birim başına kusur sayısı) Birim başına ortalama kusur sayısı; ū= ∑c / ∑n = 297/225= 1,32 Gün Kumaş topu Sayısı (n) Kusur Sayısı (c) 1 2 3 4 5 6 7 8 9 10 Toplam 20 20 20 21 22 22 23 33 23 21 225 27 23 30 28 29 31 37 29 36 27 297 ui=ci/ni 3 ū/ni ÜKS AKS 1,35 1,15 1,50 1,33 1,32 1,41 1,61 0,88 1,57 1,29 0,77 0,77 0,77 0,75 0,73 0,73 0,72 0,60 0,72 0,75 2,09 2,09 2,09 2,07 2,05 2,05 2,04 1,92 2,04 2,07 0,55 0,55 0,55 0,57 0,59 0,59 0,60 0,72 0,60 0,59 u-kontrol grafiği (Birim başına kusur sayısı) u-Control Chart 2,5 2,0 1,5 1,0 kusur UKS ,5 M C = 1,32 0,0 AKS 1 2 Sigma level: 3 3 4 5 6 7 8 9 10 Kontrol Şemalarının Yorumlanması • Kontrol şeması üzerinde sürece ait bir kalite karakteristiğinin zaman içerisindeki davranışı (değişimi) görsel olarak izlenebilir. • Kontrol şeması yardımıyla süreci etkileyen doğal sebeplerin meydana getirdiği (önlenemeyen) değişkenliğin varlığı ve sınırları belirlenir. Üründe gözlenen değişkenliğin bu sınırlar arasında olup olmadığı gözlenir. Gözlemler bu sınırlar dışına çıkıyorsa özel (önlenebilir) bir sebebin süreci etkilediği anlaşılır. Böylece bu özel sebeplerin bulunup süreci etkilemesi engellenebilir. • Bir grup ortalamasının sınırlar dışına düşmesi sürecin kontrol dışına çıktığını gösteren tek işaret değildir. Bazı durumlar da tüm ortalamalar kontrol sınırları arasına düşmesine rağmen sürecin istatistiki olarak kontrolden çıktığına karar verilebilir. Kontrol Şemalarının Yorumlanması Herhangi bir gözlem ÜKS’ın üstünde veya AKS’ının altında kalırsa (9a), Art arda 8 gözlem MÇ’inin altında veya üstünde ise (9b), Art arda 6 gözlemin artması veya azalması (9c), Art arda alınan 3 gözlemden 2 tanesinin MÇ’inin altında veya üstündeki bölgenin dış üçte birlik alanına girmesi (A bölgesi) (9d), Art arda alınan 5 gözlemden 4 tanesinin MÇ’inin altında veya üstündeki bölgenin dış üçte ikilik alanına girmesi (A veya B bölgesi) (9e), Bu beş durumdan biri gerçekleşirse süreç kontrol altında değildir Örnekler • Kontrol dışı C: 55-72 B: 72-89 A: 89-105 C: 55-38 B: 38-21 A: 21-5 Süreç Yeterlilik Analizi • Süreç yeterliliği istatistiksel bir ölçüt olup müşteri beklentilerine (spesifikasyonlarına) göre bir sürecin ne kadar değişkenlik gösterdiğini özetler. Süreç Yeterlilik İndeksleri • Cp: Şartname limitleri ile proses kontrol limitleri arasındaki ilişkiyi gösterir. • Tasarım tolerans aralığının, sürece uygunluğunu ölçmek için kullanılır. Maksimum izin verilen tasarım aralığı Cp= Sürecin normal dağılımı (USL ASL) = 6 Süreç Yeterlilik İndeksleri • Cpk: Proses ortalamasının (X), hedef değere göre konumunu belirler. Proses ortalamasının hedef değerden ne kadar uzakta olduğunu gösterir. C pk min ((USL ) / 3 ), ( ALS ) / 3 ) Cp>1,33 1<Cp<1,33 Cp<1 Cpk>1,33 1<Cpk<1,33 Cpk<1 Proses yeterli Proses marjinal olarak yeterli, daha yakından izlenmeli Proses yetersiz (proses değişkenliğinin azalması gerekli) Proses şartname limitlerini karşılıyor. Proses marjinal olarak şartname limitlerini karşılıyor. Proses ortalaması hedeften uzaklaştıkça prosesin hata yüzdesi artabilir. Proses şartname limitlerini karşılamıyor. Proses ortalaması hedef değerden uzakta. KABUL-ÖRNEKLEME PROBLEMİ Kabul örneklemesi için tipik uygulama; parti düzenlenmesi bazı durumlarda ise parti tanımlanmasıdır, inceleme faaliyetlerinin alınması için, * Kabul edilmiş partiler, üretime konulur. * Reddedilmiş partiler, tedarikçiye iade edilir ya da diğer parti düzenlemeleri için kullanılır. Örnekleme metodları, üretimin çeşitli aşamalarında kullanılabilir. Örneklemenin en önemli 3 amacı : 1. Kabul örneklemesinin amacı, parti kalitesinin tahmini değil parti tanımlanmasıdır. Kabul örnekleme planlarının çoğu tahmin amaçlı tasarlanmamıştır. 2. Kabul-örnekleme planları, kalite kontrolün herhangi direkt şeklini vermez. Kabul örneklemesi basitçe partileri kabul eder veya reddeder. Bütün partiler eşit kalitede olsalar bile; örnekleme, bazı partileri kabul eder, bazılarını reddeder. Kabul edilen partiler, diğerlerinden daha iyi değildir. Proses kontrolleri, kalitenin kontrolünü ve sistematik olarak iyileştirilmesini sağlar, fakat kabul örneklemesi sağlamaz. 3. Kabul örneklemesinin en etkili kullanımı, ürünün kalitesinin denetlenmesi değil, bir denetleme aracı olarak prosesin çıktılarının, ihtiyaçları karşılamasını sağlamaktır. KABUL-ÖRNEKLEME PROBLEMİ Kabul örneklemesi aşağıdaki durumlarda daha çok fayda sağlar. 1. Test etmenin tahrip edici olması, 2. %100 kontrolün maliyetinin son derece yüksek olması, 3. %100 kontrolün teknolojik olarak uygun olmaması ya da üretim programının aksamasına neden olabilecek çok fazla zamana ihtiyaç duyulması, 4. Kontrol edilecek çok fazla birimin bulunması ve kontrol hata oranının yeterli düzeyde yüksek olması, %100 kontrolle yüksek yüzdede hatalı birimin geçmesine neden olabilir, bu örnekleme planı ile de çıkarılabilir. 5. Tedarikçinin mükemmel bir kalite geçmişi varsa ve kontrolde %100’den bir miktar azalmaya eğilim varsa fakat tedarikçinin proses yeteneği oldukça düşükse, kontrol yapmama memnun etmeyici bir alternatiftir. 6. Potansiyel ciddi üretim risk eğilimleri varsa, buna rağmen tedarikçinin prosesi memnun edici ise sürekli ürünü gözlemleyen bir program ihtiyacı doğar. Örneklemenin Avantaj ve Dezavantajları Kabul örneklemesi, %100 kontrol ile karşılaştırıldığı zaman aşağıdaki avantajlara sahip olduğu görülür. 1. Genellikle daha az pahalıdır, çünkü daha az kontrol vardır. 2. Daha az müdahale vardır, tahribatı azaltır. 3. Tahrip edici testlerde uygundur. 4. Kontrol faaliyetlerinde, daha az personel yer alır. 5. Kontrol hata miktarını önemli düzeyde azaltır. 6. Basit hatalara rağmen, partinin tümünün reddedilmesi, tedarikçinin kalite iyileştirmeleri yapmasında etkili motivasyon sağlar. Kabul örneklemesi bazı dezavantajlara sahiptir. Bunlar aşağıdaki gibidir. 1. “Kötü” partileri kabul etme, “İyi” partileri reddetme riskini taşır. 2. Ürün veya ürünü üreten proses hakkında, daha az bilgi oluşur. 3. Kabul örneklemesi, %100 kontrolde gerekmediği kadar planlama ve kabul-örnekleme prosedürü dokümantasyonu gerektirir. Örneklemenin Avantaj ve Dezavantajları Kabul örneklemesinin; iki uç olan %100 kontrol ve kontrol yapılmaması arasında orta bir seviye dir. Bu, ürünü üreten, imalat prosesinde iki uç noktayı ayıran, yeterli bilgiyi içeren bir metodolojidir. Kabul örnekleme planı ile izole edilmiş bir partide, uygulamada kalitenin direkt kontrol edilmemesine rağmen, bu plan, tedarikçiden gelen parti gruplarına uygulandığı zaman, hem partilerin üreticisi için hem de tüketici için korumayı sağlayan anlam taşır. Aynı zamanda partileri üreten prosesi içeren, birikimli kalite geçmişini verir ve proses kontrolünde faydalı olan, tedarikçinin tesisinin yeterli olup olmadığı gibi geri bildirimler verir. Sonuç olarak, tedarikçi için üretim prosesinin iyileştirilmesi, ekonomik veya psikolojik baskı oluşturur. Örnekleme Planlarının Çeşitleri • Temel bir sınıflandırma, veri çeşidine göredir. Değişkenler ve nitelikler. • Diğeri ise karar için ihtiyaç duyulan örnek sayılarına dayanır. * Tek-örnekleme planları * Çift-örnekleme planları * Çoklu-örnekleme planları * Sıralı-örnekleme planları • Tek-, çift-, çoklu- ve sıralı-örnekleme planları eşdeğer sonuçlar üretmek için tasarlanır. İçerikte göz önünde bulundurulan faktörler : * İdari yeterlilik * Plan tarafından üretilen bilginin çeşitleri * Plan tarafından ihtiyaç duyulan ortalama kontrol miktarı * Üretim akışında prosedür etkisi Parti Oluşturulması Kontrol için partilerin oluşturulması, önemli koşulları içerir; 1. Partiler, homojen olmalı (Partideki üniteler, aynı makine , aynı operatörler ve ortak hammaddeden üretilmeli) 2. Büyük partiler, küçük partilere tercih edilir. (Ekonomik etkinlik) 3. Partiler, hem üretici, hem de tüketicisi tarafından kullanılan malzeme taşıma sistemleriyle uyumlu olmalı Rasgele Örnekleme Kontrol için seçilen birimler, rasgele seçilmeli ve partideki bütün birimleri temsil etmelidir Birimler, her kübün içerisinden seçilmelidir. Şekil 1. Partinin katmanlaştırılması Kabul Örneklemesi Kullanımının Kuralları • Kabul-örneklemesi planı, örnek büyüklüğü ve parti tanımlanması için kabul/red kriterini içerir. • Kabul-örneklemesi şeması, %100 kontrol ve kabul örnekleme miktarı ile ilgili; parti büyüklüğünü, örnek büyüklüğünü ve kabul/red kriterlerini içeren kabul-örneklemesi planı, bir prosedürler kümesidir. • Bir örnekleme sistemi, bir veya birden fazla şemanın birleşimidir. Nitelikler için Tek-Örnekleme Planları Tek-Örnekleme Planı Tanımı N büyüklüğündeki bir partinin kontrol için alındığını farzedin. n örnek büyüklüğündeki ve c kabul numaralı tek-örnekleme planı tanımlanır. Bu yolla, eğer parti büyüklüğü N=10.000 ise örnekleme planı, n=89 c=2 10.000 büyüklüğüne sahip bir partiden, n=89 birimin kontrol edildiği, d kadar uymayan veya kusurlu ürün tespit edildiği anlamına gelir. Eğer tespit edilen kusurlu sayısı d, c=2’ye küçük eşitse, parti reddedilecektir. Kontrol edilen kalite karakteristiği bir nitelik olduğu sürece, örneklemedeki her birim uymayı ve uymamayı simgeler. Aynı örnekte bir veya birden fazla nitelik kontrol edilebilir, genellikle, bir veya birden fazla niteliğe uymayan birim, kusurlu birim olarak söylenebilir. Bu prosedür tek-örnekleme planı olarak adlandırılır, çünkü parti, n büyüklüğünde bir örneklemedeki sınırlandırılmış bilgide, tanımlama temellidir. Operasyon Özellikleri (OC) Eğrisi Kabul-örnekleme planının önemli bir performans ölçümü operasyon özellikleri eğrisidir. Bu eğri, partinin kabul edilme olasılığına karşın kusurlu kısmın grafiğini çizer. Dolayısıyla, OC eğrisi, örnekleme planının ayırt etme kuvvetini gösterir. Belirli bir kısmı kusurlu olan onaylanmış partilerin kabul edilip,edilmeme olasılığını gösterir. Kabul edilme olasılığı, Pa Operasyon Özellikleri (OC) Eğrisi Kusurlu kısım partisi, p Şekil 2 Tek-örnekleme planının n=89, c=2, OC Eğrisi OC eğrisi, örnekleme planının ayırt etme kuvvetini gösterir. Örneğin, örnekleme planında n=98, c=2, eğer partiler %2 kusurlu ise kabul edilme olasılığı yaklaşık olarak 0,74’tür. (Tablo 14.2) Kusurlu kısım partisi, p Kabul edilme olasılığı, Pa Tablo 2 Tek-örnekleme planı için kabul edilme olasılıkları n=89, c=2 Operasyon Özellikleri (OC) Eğrisi Kabul edilme olasılığı, Pa Kabul edilme olasılığı, Pa Kabul edilme olasılığı, Pa OC eğrilerinde c ve n’nin etkisi Kusurlu kısım partisi, p Şekil 3 İdeal OC eğrisi Kusurlu kısım partisi, p Kusurlu kısım partisi, p Şekil 4 Farklı örnekleme büyüklükleri için Şekil 5 OC eğrisinde, kabul edilme sayısında OC eğrileri değişkenliğin etkisi Örnek büyüklüğü ile birlikte OC eğrisi, ideal OC eğrisine daha çok benziyor. Kabul edilme sayısı azaldıkça, OC eğrisi sola kayıyor. Küçük değerler kullanan c ile yapılmış planlar parti kusurlu oranının daha düşük seviyelerde ayırt edilmesini sağlar. Operasyon Özellikleri (OC) Eğrisi OC Eğrisinde Spesifik Noktalar • Tedarikçinin en kötü kalite seviyesine sahip prosesi, tüketici kabul edebileceği ortalama prosese Kabul Edilebilir Kalite Seviyesi diye adlandırılır (AQL). * AQL, tedarikçinin üretim prosesinin özelliğidir, örnekleme planının özelliği değildir. * Tüketici, her zaman örnekleme planını tasarlayacak, böylece OC eğrisi AQL’de kabul edilebilir yüksek olasılık verir. • Düşük kaliteli bireysel partiler için sağlanan koruma (LTPD) parti toleransındaki yüzde kusur tarafından oluşturulur. * Aynı zamanda reddedilebilir kalite seviyesi (RQL) ve sınırlı kalite seviyesi diye adlandırılır. * LTPD, tüketici tarafından belirlenmiş parti seviyesi kalitesidir, örnekleme planının karakteristiği değildir. • Örnekleme planları, AQL ve LTPD noktalarında tanımlanmış performans vermek için tasarlanmıştır. Operasyon Özellikleri (OC) Eğrisi A Tipi ve B Tipi OC Eğrileri Önceki örneklerde çizilen OC eğrileri, B tipi OC eğrileri olarak adlandırılır. OC eğrilerinin çiziminde, örneklemelerin büyük bir partiden geldiği veya bir prosesten rasgele seçilmiş partiler dizisinden geldiği farz edilir. Bu durumda, partinin kabul edilebilirlik olasılığının hesaplanması için binom dağılımı, tam olarak kullanılabilir bir olasılık dağılımıdır. Böyle bir OC eğrisi, B tipi OC eğrisine dayanır. A tipi OC eğrileri, sınırlı büyüklükteki parti büyüklüklerinin kabul edilme olasılıklarının hesaplanması için kullanılır. Parti büyüklüğünün N, örnekleme büyüklüğünün n, kabul edilme sayısının c dağılımdır. Kabul edilme olasılığı, Pa olduğunu varsayalım. Örneklemedeki kusurlu birim sayısının örnekleme dağılımı hipergeometrik Kusurlu kısım partisi, p Şekil 6 A tipi ve B tipi OC eğrileri Operasyon Özellikleri (OC) Eğrisi OC eğrisi amaçlarının diğer davranışları Örnekte iki yaklaşımla karşılaştırılan örnekleme planı tasarımlarının, OC eğrisi için mutlak ayrımlara sahiptir. İki yaklaşım; örnekleme planlarının “0” kabul sayısı ile kullanımı (z=0), parti Kabul edilme olasılığı, Pa Kabul edilme olasılığı, Pa büyüklüğünün sabitlenmiş yüzdesi ile örnekleme büyüklüğünün kullanımı. Kusurlu kısım partisi, p Şekil 7 c=0 ile tek-örnekleme planı için OC eğrileri Kusurlu kısım partisi, p Şekil 8 Örnekleme büyüklüğü n’in, parti büyüklüğünün %10’u olan örnekleme planları için OC eğrileri Belirlenmiş OC Eğrisi ile Tek-Örnekleme Planı Tasarımı • Tasarlanacak bir kabul-örnekleme planında temel yaklaşım, OC eğrisinin belirlenmiş iki noktadan geçmesini içermelidir. • Örnekleme planını şu şekilde oluşturmak istediğimizi varsayalım, Kusurlu kısmı P1 olan parti için 1- α kabul edilme olasılığı, Kusurlu kısmı P2 olan parti için β kabul edilme olasılığı. • Denklem 14-3’ün çözümü, örnekleme büyüklüğü n ve kabul edilme sayısı c’dir. Denklemlerin çözümü için Şekil 14-9’daki nomograf kullanılabilir. c’nin olasılığı veya n denemelerindeki az tekrarlananlar Tek denemede tekrar olasılığı (p) Belirlenmiş OC Eğrisi ile Tek-Örnekleme Planı Tasarımı Şekil 9 Binom nomografı Düzeltici Kontrol Red parti Gelen parti Kusurlu kısım 0 Çıkan parti Kontrol Faaliyeti Kusurlu kısım P0 Kusurlu kısım p1<p0 Kabul parti Kusurlu kısım P0 Şekil 10 Düzeltici kontrol Ortalama çıktı kalitesi, örnekleme planının düzeltilmesinde hesaplanır. Ortalama çıktı kalitesi, düzeltici kontrol uygulanmasıyla sonuçlanan partinin kalitesidir. Kusurlu kısmı p olan prosesten elde edilen uzun sıralı partilerin kalitesinin ortalama değeridir. Ortalama çıktık kalitesi için bir formül elde etmek basittir (AOQ). Parti büyüklüğünün N olduğunu ve bütün tespit edilen kusurlu birimlerin yeni birimlerle değiştirildiğini varsayalım. Böylece N büyüklüğündeki partide, 1. Örneklemedeki n birimleri, kontrolden sonra, kusur içermez, çünkü bütün kusurlular değiştirilmiştir. 2. N – n birimleri, parti reddedildiyse, kusur içermez 3. N – n birimleri, parti kabul edildiyse, p(N-n) kusur içerir. Düzeltici Kontrol Böylece, kontrolün çıktı aşamasındaki partiler, ortalama kusurlu kısım diye belirtilebilecek, Pap(N-n)’a eşit olan kusurlu birimlerin beklenen sayısı, ortalama çıktı kalitesi olarak adlandırılır. 14-4’deki denklemi açıklamak için, N=10.000, n=89 ve c=2 ve gelen parti kalitesi p=0,01 olduğunu varsayalım. p=0,01’de, Pa=0,9397 ve AOQ, Ortalama çıktı kalitesi %0,93 kusurludur. Parti büyüklüğü N, n örnek büyüklüğüne bağlı olarak daha büyüyecektir. 14-4 denklemini şu şekilde yazabiliriz. Düzeltici Kontrol Çıktı partilerinin ortalama kusurlu kısmı AOQL, eğrideki maksimum noktadır Girdi partisi kalitesi (kusurlu kısım), p Şekil 11 n=89, c=2 için ortalama çıktı kalitesi Düzeltici Kontrol Eğer parti kalitesi 0<p<1 ise, parti başına ortalama kontrol miktarı, örnekleme büyüklüğü n ve parti büyüklüğü N arasında değişecektir. Eğer parti p kalitesine sahipse ve partinin kabul edilme olasılığı Pa ise parti başına ortalama toplama kontrol; 14-6’daki denklemin kullanımını anlamak için, bir önceki örneği hatırlayalım, N=10.000, n=89, c=2 ve p=0,01. Böylece Pa=0,9397 bulunmasıyla; Bunun, kusurlu kısmı p=0,01 olan çoğu parti içinden kontrol edilen ortalama birim sayısı olduğunu unutmayalım. Ortalama toplam kontrol (ATI) Düzeltici Kontrol Kusurlu kısım partisi, p Şekil 12 n=89, c=2 örnekleme planı için, (parti büyüklükleri 1.000,5.000 ve 10.000 için) ortalama toplam kontrol eğrisi Düzeltici Kontrol Düzeltici kontrol planının AOQL’si çok önemli bir özelliktir. Tanımlanmış değerlere sahip AOQL için düzenlenmiş kontrol programlarının tasarımı mümkündür. Fakat AOQL’nin spesifikasyonu için tek bir örnekleme planı belirlemek yeterli değildir. Dolayısıyla belirli bir AOQL için yapılan örnekleme planı seçimi pratikte oldukça yaygındır, buna ek olarak parti kalitesinin belirli bir seviyesinde minimum ATI’yi sağlar. Parti kalitesi seviyesi çoğunlukla gelen parti kalitesi seviyesine çok benzer seçilir ve genellikle süreç ortalaması olarak adlandırılır. Bu planların oluşturulmasındaki prosedür oldukça kolay anlaşılırdır ve Duncan tarafından örneklendiği gibidir. Genellikle bu prosedürü izlemek gereksizdir, çünkü AOQL için verilen minimum ATI’yi veren ve süreç ortalaması p olarak belirlenen örnekleme planı tabloları Dodge ve Roming tarafından geliştirilmiştir. Bu tabloların kullanımını Bölüm 14-5’de tanımlayacağız. LTPD noktasında istenilen seviyede koruma sağlayan düzeltici bir denetleme programı tasarlanması da mümkündür. Bu sayede belirlenmiş süreç ortalaması p için ortalama toplam denetim minimize edilir. Dodge-Roming örnekleme kontrol tabloları genellikle LTPD planlarını sağlar. Bölüm 14-5’de belirli LTPD korumalarını öneren planların bulunduğu Dodge-Roming tablolarının kullanımı tartışılacaktır. İkili, Çoklu ve Sıralı Örnekleme İkili Örnekleme Planları • Bir ikili örnek planı parti hakkında karar vermeden önce belirli koşullar altında ikinci bir örnek gerektiren bir prosedürdür. Bir ikili örnekleme planı 4 parametre ile tanımlanır: – n1=ilk örnekteki örnek büyüklüğü – c1=ilk örnekten kabul edilen sayısı – n2=ikinci örnekteki örnek büyüklüğü – c2=her iki örnekten de kabul edilen sayısı İkili Örnekleme Planları Örneğin, n1=50, c1=1, n2=100 ve c2=3 olsun. Bu takdirde, ilk rassal n1=50parçalık partiden örnek seçilir ve örnekteki kusurlu sayısı, d1, gözlemlenir. Eğer d1≤c1=1 ise, ilk örnek üzerinden parti kabul edilir. Eğer d1>c2=3 ise, parti ilk örnek üzerinden reddedilir. Eğer c1<d1≤c2 ise, n2=100 örnek büyüklüğüne sahip 2. rassal partiden seçim yapılır, ve ikinci örnekteki kusurlu sayısı , d2, gözlemlenir. Şimdi hem ilk hem de ikinci partilerden gözlemlenen kusurlu sayılarından, d1+d2, yola çıkarak parti için karar verilmelidir. Eğer d1+d2≤c2=3, ise parti kabul edilir. Eğer d1+d2>c2=3, ise parti reddedilir. Bu ikili örnekleme planı operasyonları Şekil 14-13’de grafik ile gösterilmiştir. • İkili örnekleme planının tekli örnekleme planına göre avantajı kontrol için gerekli toplam miktarı azaltmasıdır. •Farz edelim ki; ikili örneklemede ilk örnek tekli örneklemedekinden daha az olsun; • Eğer parti ilk örnekte kabul veya reddedilir ise; kontrolün maliyeti azalır. • Ayrıca ikinci örneklemeyi yapmadan reddetmek de olasıdır. Şimdi, n1=50, c1=1, n2=100 ve c2=3 planı için, OC eğrisi hesaplamalarını örnekleyelim. Eğer Pa birleşik örnekler üzerinden kabulün olasılığını ve PaI ve PaII de sırasıyla ilk ve ikinci örneklemelerin kabulünün olasılığını gösteriyor ise; PaI n1=50 için d1< c1=1 kusurlu gözlemlerinin olasılığıdır. Eğer p=0.05 gelen partideki kusurlu oranı ise; İkinci örnekteki kabul olasılığını saptamak için ikinci örnekteki kabul durumları listelemek gerekir.İkinci bir örneklemeye yalnızca ilk örnekteki kusurlu sayısı 2 veya 3 ise gerek duyulur, yani c1<d1≤c2 ise; d1=2 ve d2=0 veya 1 ise, yani ilk örnekten 2 ikinci örnekten 1 veya daha az kusurlu bulduğumuz durumdur. Bu durumun olasılığı; 1. d1=3 ve d2=0 ise, yani 3 kusurluyu da ilk örnekten bulduğumuz ve ikinci örnekten hiç kusurlu bulmadığımız durumdur. Bu durumun olasılığı; Dolayısıyla ikinci örnekten kabulün olasılığı; Bu durumda kusurlu oranının p=0.005 olduğu bir partinin kabul olasılığı; OC eğrisinin diğer noktaları da benzer şekilde hesaplanır. Ortalama Örnekleme Sayısı Eğrisi (ASN-Average Sample Number) Eğer ikinci örneklemenin tamamını denetlersek , ikili örneklemede ortalama örnekleme sayısı için genel formül P1 ilk örnekleme için partiyi kabul veya reddetme olasılıgıdır. Yani P1= P{parityi ilk örnekleme de kabul etmek} + P { partiyi ilk örneklemede reddetmek} Eğer denklem 14-7 deki kısmi parti bozuk ürünler p’ nin değişik değerleri için değerlendirilirse , ASN- p grafiği ortalama örnekleme sayısı eğrisi olarak adlandırılır. Azaltılmış ikili örnekleme planında ikinci örnekleme üzerinde ASN eğrisi formülü Düzeltici Denetleme İkili örnekleme ile düzeltici örnekleme yapıldığında , AOQ eğrisi bütün bozuk ürünlerin örneklemede yada 100% denetlemede bulunduğu ve sağlamalarıyla değiştirildiği kabul edildiğinde yukarıdaki şekilde elde edilir ‘in son parti kabul olasılığı olduğunu ve bu kabul olasılığının parti veya sürecin kalite seviyesi p’ ye bağlı olduğunu hatırlayın Çoklu Örnekleme Planları • Çoklu örnekleme planı bir partiyi ret etmeden önce ikiden fazla örnekleme kullanarak oluşturulur ve ikili örnekleme sisteminin bir uzantısıdır. Bu plan şu şekilde çalışır: eğer herhangi bir aşamanın tamamlanması sırasında, bozuk olan ürün sayısı kabul sayısından az veya eşitse, parti kabul edilir. Eğer denetimin herhangi bir aşaması esnasında bozuk ürün sayısı red sayısını eşit olur veya aşarsa parti reddedilir. Diğer zamanlarda bir sonraki örnekleme alınır. Çoklu örnekleme prosedürü 5 tane örnekleme alınıncaya kadar devam eder ki bu zamanda parti için bir karar verilmesi gerekir. İlk örnekleme çoğunlukla 100% oranında denetlenir. Daha sonraki örneklemlerin denetlenme oranı çoğunlukla azaltılır. Sıralı Örnekleme Planı Sıralı örnekleme ikili örnekleme ve çoklu örnekleme konseptlerinin bir uzantısıdır. Sıralı örneklemede bir partiden sıralı örneklemeler alınır ve örnekleme işleminin sonucuna göre örnekleme sayısı belirlenir. Pratikte, sıralı örnekleme teorik olarak sonsuza kadar devam edebilir, ta ki partinin %100’i kontrol edilene kadar. Pratikte, sıralı örnekleme planları denetlenmiş ürün sayısı tekli örnekleme modeliyle yapılacak denetleme sayısının üç katına ulaştığında biter. Eğer secilen örnekleme sayısı her aşamada 1 ‘den büyük olursa süreç, grup sıralı örnekleme olarak adlandırılır. Eğer her aşamada kullanılan örnekleme sayısı 1 olursa süreç parçadan-parçaya sıralı örnekleme olarak adlandırılır. Bu eşitliklerin kullanımını örneklemek istersek; için varsayalım ki biz sıralı örnekleme planını bulmak istiyoruz. Bu yüzden, limit çizgileri ve Partiyle ne yapılacağına grafik ile karar vermek yerine, sıralı örnekleme planı Tablo 14-3 teki gibi gösterilebilir. Tablodaki girdiler, kabul ve ret çizgilerinde için kullanılan denklemlerde n’nin değerlerini değiştirerek ve kabul ve ret sayılarını hesaplayarak bulunabilir. Örnek olarak, n=45 için hesaplamalar: Kabul ve red sayıları tamsayı olmak zorundadır, dolayısıyla kabul sayısı sonraki tamsayı XA’ya eşit veya daha küçük ve red sayısı sonraki tamsayı XR’ye eşit veya daha büyüktür. Yani, n=45 için kabul sayısı 0 red sayısı 3’dür.Dikkat edelim ki parti 44’üncü birim test edilinceye kadar kabul edilmemektedir.Tablo 14-3’de sadece ilk 46 birim gösterilmiştir. Doğal olarak, plan 276 birimin, tekli örnekleme planı için gerekli örnek büyüklüğünün üç katıdır, kontrolünden sonra durdurulur. Sıralı Örnekleme için OC ve ASN Eğrileri Sıralı örnekleme için OC eğrisi kolayca elde edilebilir. Eğri üstündeki iki nokta(p1 ,1- α) ve (p2,β). Bir üçüncü nokta, eğrinin ortası civarında, p=s ve Pa=h2/(h1+h2) . Sıralı örneklemede alınan ortalama örnekleme sayısı burada ve Düzeltici denetleme Sıralı örneklemede ortalama çıktı kalitesi(AOQ) yaklaşık olarak şu şekilde verilebilir Ortalama toplam denetim de kolayca elde edilebilir. Dikkat edin; parti kabul edildiğinde örnekleme sayısı A/C ve parti reddedildiğinde N olur. Bu yüzden ortalama denetleme sayısı Deney Tasarımı ÖRNEK Örnek-2 Örnek-1 Küçük iyidir. Örnek-3