Kesikli Üniform Dağılımı

advertisement
KESİKLİ ŞANS DEĞİŞKENLERİNİN
OLASILIK DAĞILIMLARI
• Kesikli Üniform Dağılımı
• Bernoulli Dağılımı
• Binom Dağılımı
• Üniform dağılımı gösteren bir şans değişkeni k farklı
noktada tanımlı ise olasılık dağılımı;
• Negatif Binom Dağılımı
1

P( X  x )   k

0
• Geometrik Dağılım
• Hipergeometrik Dağılım
• Poisson Dağılımı
1
1
1 k (k  1) k  1
E ( x)   x P( x )   x 

k
k
2
2
x 1
k
i
i
 
x 1
i
•=
Var (x)  E x  Ex 
2
2
x
x 1
2
1  k  1
1  k (k  1)(2k  1)  (k  1)

 
 
k
6
4
k  2 
Var ( x) 
(k  1)(k  1)
12
d.d
şeklinde ifade edilir.
2
S = { x / 1,2,3,4,5,6 }
Ortaya çıkan olaylar eşit olasılıklı olaylar x şans
değişkeninin dağılımı k = 6 olan kesikli üniform
dağılımına uygundur.
1

P( X  x)   6

0
2
n
x  1,2,3...., k
Örnek: Hilesiz bir zar atıldığında X şans değişkeni
ortaya çıkabilecek farklı durum sayısını ifade ettiğine
göre X’in olasılık dağılımını oluşturarak beklenen
değerini ve varyansını bulunuz.
Kesikli Üniform Dağılımının
Beklenen Değer ve Varyansı
k
Kesikli Üniform Dağılımı
• Kesikli bir şans değişkeni tanımlı olduğu tüm
noktalarda eşit olasılık değerine sahip ise bir başka
ifadeyle tanımlı olduğu değerlerin hepsinde olasılık
fonksiyonun aldığı değer sabit ise bu kesikli şans
değişkeni üniform dağılımına uygundur.
2
3
E ( x) 
6 1
 3,5
2
x  1,2,3,4,5,6
d .d
Var ( x) 
(6  1)(6  1) 35

12
12
4
1
Bernoulli Dağılımı
• Bir şans değişkeninin bernoulli dağılımı göstermesi için
ilgilenilen süreçte
bernoulli deneyinin varsayımlarının
sağlanması gereklidir.
Bernoulli Deneyinin Varsayımları:
1. Deneyler aynı koşullarda tekrarlanabilirlik özelliğine sahip
olmalıdır.
2. Deneylerin yalnız iki mümkün sonucu olması gereklidir.
3. Başarı olasılığı (p), deneyden deneye değişmemektedir
(Başarısızlık olasılığı q = 1-p ile gösterilir)
4. Denemeler birbirinden bağımsız olmalıdır.
6
Örnekler:
• Bir fabrikada üretilen bir ürünün hatalı veya
sağlam olması,
• Bir madeni para atıldığında üst yüze yazı veya
tura gelmesi,
• Hilesiz bir zar atıldığında zarın tek veya çift
gelmesi,
• Bernoulli deneyinde ortaya çıkan sonuçlardan
biri
tanesi
başarı
durumu,
diğeri
ise
başarısızlık olarak ifade edilir. Bernoulli şans
değişkeninin
dağılımı
ifade
edilirken
sadece 1 kez tekrarlanması gereklidir.
deneyin
7
Bernoulli dağılışında X şans değişkeni başarı
durumu için 1, başarısızlık durumu için ise 0 değerini
alır.
• S = { x / 0,1 }
Bernoulli Dağılımının Olasılık Fonksiyonu;
 p x (1  p)1 x
P( X  x)  
0

m=E(x)=p
x  0,1
d .d
s2= Var ( x ) = p (1-p) = pq
8
2
Örnek: Bir deste iskambilden çekilen bir kağıdın as
olup olmaması ile ilgileniyor. As gelmesi başarı
olarak ifade edildiği durum için olasılık fonksiyonunu
oluşturunuz.
x = 0 (as gelmemesi)
S = { x / 0,1 }
P( X = 0 ) = 48 / 52
• Binom
deneyinin
gerçekleşmesi
için
bernoulli
sayısını ifade etmektedir.
P( X = 1 ) = 4 / 52
• n denemede en az 0, en fazla n adet başarı
gözlenebileceğinden
x  0,1
d .d
9
Binom Olasılık Fonksiyonunun
Elde Edilmesi
bağımsızdır ve olasılık fonksiyonu
x  0,1
olarak ifade edilmiş idi. Bernoulli deneyi n defa
toplam
x
adet
S = { x / 0,1,2,……,n }
olur.
10
Başarı ve başarısızlıkların oluşum sırası yani
sıralama önemsiz ise  n   n C x
faklı şekilde ortaya
 x
çıktığı için ;
Gerçekleştirilen her bir Bernoulli deneyi birbirinden
durumda
araya gelmesi sonucunda binom deneyi gerçekleşir.
• Binom şans değişkeni X, n adet denemedeki başarı
 4  x  48 1 x
   
P( X  x)   52   52 

0

tekrarlandığı
• Birbirinden bağımsız n adet bernoulli deneyinin bir
deneyinin bütün varsayımlarının sağlanması gereklidir.
x = 1 ( as gelmesi)
P(x)  p x . q1 x
Binom Dağılımı
başarı
 n  x
n x
 .p .(1  p)
P( X  x)   x 

0

x  0,1,2,...., n
d .d
olmasının olasılığı, x adet başarı olasılığı (p) ile
n - x adet başarısızlık olasılığının (q=1-p) çarpımını
içermelidir.
11
olarak elde edilir.
12
3
Binom Dağılımının
Karakteristikleri
Örnekler:
• Bir fabrikanın deposundan seçilen 10 üründen
2’sinin hatalı olması ,
• Bir madeni para 5 kez atıldığında hiç tura
gelmemesi, üst yüze yazı veya tura gelmesi,
• Hilesiz bir zar 4 kez atıldığında zarın en çok 1
kez çift gelmesi,
Aritmetik Ortalama
m  E ( X )  np
Varyans
s2  np(1  p)  npq
13
Örnek: Bir işletmede üretilen ürünlerin % 6’sının hatalı
olduğu bilinmektedir. Rasgele ve iadeli olarak seçilen 5
üründen,
a)1 tanesinin hatalı olmasının olasılığını,
b) En az 4 tanesinin hatalı olmasının olasılığını
hesaplayınız.
14
Örnek:
Metal hilesiz bir para 10 kez fırlatılıyor
(n=10 p=q=1/2=0.5)
a)bir kez yazı gelmesi olasılığı
10 
10!
10.9!
p  x  1    .  0,5 1.  0,5 9 
(0.5)10 
(0.5)10
1!9!
9!
1 
b)
p = 0,06 1- p = 0,94 n = 5
a)P ( X = 1 ) = ?
10 
p  x  0     .  0,5 0 .  0,5 10   0,5 10
0 
 5
P( X  1)   .(0,06)1 .(0,94) 4  0,23
1 
c) en az 2 kez yazı gelmesi olasılığı
px  2  px  2  ...  px  10
b)P ( X ≥ 4 ) = ?
P ( X ≥ 4 ) = P ( X = 4) + P ( X = 5 )
5 
 5
  .(0,06) 4 .(0,94)1   .(0,06)5 .(0,94) 0
4
 
 5
hiç yazı gelmemesi olasılığı
15
4
Negatif Binom (Pascal)Dağılımı
 1  p  x 2 
• Bernoulli deneyinin tüm varsayımları negatif binom
dağılımı içinde geçerlidir.
 1  p  x  1
• Binom dağılımında n denemede x adet başarı
 1   p  x  1  p  x  0  
olasılığı ile ilgilenilirken, negatif binom dağılımında ise
10 

10 
 1    .  0,5  1.  0,5  9    .  0,5  0 .  0,5  10 
1
0
 
 

şans değişkeni (X), k ncı başarıyı elde edinceye
 1  10.(0.5)10  (0.5)10  1  (0.5)10 (10  1)  1  11(0.5)10
• x : deney sayısı
• p : başarı olasılığı
1 2 3 ………………. x-1
1 2 3 ...……………. k-1
k : başarı sayısı
S = { x / k, k+1, k+2, k+3… }
kadar yapılan deney sayısına karşılık gelir.
• Örnekler:
Bir parayı 5 kez tura gelinceye kadar attığımızda 5 nci
turayı elde ettiğimiz deneme sayısı,
Bir basketbolcunun 3 sayılık atışlarda 10 ncu isabeti
18
sağlaması için gerekli olan atış sayısı.
Negatif Binom Dağılımının
Beklenen Değer ve Varyansı
E ( x)  m 
x
k
k
p
Var ( x) 
k (1  p)
p2
Binom dağılımını kullanarak x-1 denemede k-1 adet başarı
olasılığı hesaplanır ve x nci denemedeki k ncı başarıyı
elde etme olasılığı p ile bağımsız olaylar olduğundan
çarpılarak aşağıdaki olasılık fonksiyonu elde edilir.
 x  1 k
xk
 p 1  p 

P( X  x)   k  1
0

x  k , k  1, k  2,.....
19
20
d .d
5
 x  1 k
xk
x  k , k  1, k  2,.....
 p 1  p 

P( X  x)   k  1
0
d .d

Örnek: Bir kişinin hilesiz bir zarı 10 kez atması sonucunda,
10 ncu atışında 5 nci kez 6 gelmesi olasılığını hesaplayınız.
p =1/6
1- p = 5 / 6
(başarı sayısı)
x = 10 (deney sayısı)
k =5
• Geometrik dağılım gösteren şans değişkeni X, ilk
10  1 1 5 5 5
P( X  10; k  5)  
 .( ) .( )
6
 5 1  6
başarıyı elde edinceye kadar yapılan deney sayısını
• Zarın kaçıncı kez atılması sonucu 5 nci kez 6 gelmesini
beklersiniz?
E ( x) 
k
5

 30
p 16
• x: deney sayısı
21
ifade eder.
Örnekler:
• Bir parayı tura gelinceye kadar attığımızda tura gelmesi
için yapılan atış sayısı,
• Bir işletmenin deposundan ilk hatalı ürünü bulana
kadar alınan örnek sayısı.
22
Geometrik Dağılımının
Beklenen Değer ve Varyansı
p: başarı olasılığı
• S = { x / 1, 2, 3, 4….. }
E ( x)  m 
Negatif Binom dağılımında k = 1 alındığında;
 x  1 k
xk
 p 1  p 

P ( X  x)   k  1
0

Geometrik Dağılım
• Bernoulli deneyinin tüm varsayımları geometrik dağılım
içinde geçerlidir.
• Negatif Binom dağılımının özel bir durumudur.
• k = 1 olduğunda negatif binom dağılımı geometrik
dağılımı olarak ifade edilir.
1
p
Var ( x) 
1 p
p2
x  k , k  1, k  2,.....
d .d
 x  1 1
x 1
 p 1  p 
P( X  x)  
1  1 
 p 1  p x 1
P( X  x)  
0
x  1,2,3,.....
d .d
23
24
6
Örnek: Bir avcı hedefe isabet sağlayana kadar ateş
etmektedir. Avcının hedefi vurma olasılığı 0,75 olduğuna
göre avcının hedefi ilk kez 8 nci kez atış yaptığında
isabet ettirmesinin olasılığını hesaplayınız.
x=8
Hipergeometrik Dağılım
Varsayımları,
• n deneme benzer koşullarda tekrarlanabilir.
P ( X = 8) = ?
• Her denemenin 2 mümkün sonucu vardır.
0,751  0,75 x 1
P( X  x)  
 0
x  1,2,3....
d .d
• Sonlu populasyondan iadesiz örnekleme yapılır.
• Örnekleme iadesiz olduğundan başarı olasılığı
( p ) deneyden deneye değişir.
P( X  8)  0,751  0,7581 0,750,257
25
Hipergeometrik Dağılımın
Olasılık Fonksiyonu
n
N
B
x
:
:
:
:
26
Hipergeometrik Dağılımın Karakteristikleri
E ( x)  n p
örnek hacmi
anakütle eleman sayısı
populasyondaki başarı sayısı
örnekteki başarı sayısı
p = B/N için
 N n
Var ( x)  np(1  p)

 N 1 
S = { x / 0,1, 2, 3, …..,n }
 B   N  B 

   
  x   n  x 
P( X  x)  
N
 

n 


0
x  0,1,2,3......, n
d .d
27
28
7
 B   N  B 

   
  x   n  x 
P( X  x)  
N
 

n 


0
Örnek: Yeni açılan bir bankanın ilk 100 müşterisi içinde
60 tanesi mevduat hesabına sahiptir. İadesiz olarak
rasgele seçilen 8 müşteriden 5 tanesinin mevduat
hesabına sahip olmasının olasılığı nedir?
N= 100
n
N
B
x
:
B = 60
n=8
x=5
•N= 100
:
örnek hacmi
:
anakütle eleman sayısı
populasyondaki başarı sayısı
:
örnekteki başarı sayısı
B = 60
n=8
x  0,1,2,3......, n
d .d
x=5
 60   100  60 



5 
85

P ( X  5)  
 100 


 8 
29
Poisson Sürecinin Varsayımları
Poisson Dağılımı
• Kesikli
Şans
dağılımlarından en
Dağılımıdır.
değişkenlerinin
önemlilerinden biri
• Günlük hayatta ve uygulamada
kullanım alanı bulunmaktadır.
çok
30
olasılık
Poisson
sayıda
• Ünlü Fransız matematikçisi Poisson tarafından
bulunmuştur.
• Belirli bir alan içerisinde rasgele dağılan veya
zaman içerisinde rasgele gözlenen olayların
olasılıklarının hesaplanabilmesi için çok kullanışlı bir
31
modeldir.
1. Belirlenen periyotta
olay sayısı sabittir.
meydana gelen ortalama
2. Herhangi bir zaman diliminde bir olayın meydana
gelmesi bir önceki zaman diliminde meydana
gelen olay sayısından bağımsızdır.(periyotların
kesişimi olmadığı varsayımı ile)
3. Mümkün olabilecek en küçük zaman aralığında
en fazla bir olay gerçekleşebilir.
4. Ortaya çıkan olay sayısı ile periyodun uzunluğu
doğru orantılıdır.
32
8
Poisson Dağılımının
Olasılık Fonksiyonu
Örnekler
• Bir şehirde bir aylık süre içerisinde meydana
gelen hırsızlık olayların sayısı,
• Bir telefon santraline 1 dk. içerisinde gelen
telefon çağrılarının sayısı,
• Bir kitap içindeki baskı hatalarının sayısı,
• İstanbul’da 100 m2’ye düşen kişi sayısı,
• Ege Bölgesinde 3 aylık sürede 4,0 şiddetinden
büyük olarak gerçekleşen deprem sayısı.
l
x
: belirlenen periyotta ortaya çıkan olay sayısı
: ortaya çıkma olasılığı araştırılan olay sayısı
S = { x / 0,1, 2, 3, ….., }
 e l l x

P( X  x)   x!
 0

x  0,1,2,...
diger durumlarda
33
Örnek: Bir mağazaya Cumartesi günleri 5 dakikada ortalama
olarak 4 müşteri gelmektedir. Bir Cumartesi günü bu
mağazaya,
a) 5 dakika içinde 1 müşteri gelmesi olasılığını,
b)Yarım saate 2’den fazla müşteri gelmesi olasılığını,
Poisson Dağılımının
Beklenen Değer ve Varyansı
Beklenen Değer
34
E (x)  m  l
a) l  4 P ( x = 1 ) = ?
P( X  1) 
e 4 41
 4e 4
1!
b) 5 dk’da 4 müşteri gelirse, 30 dk’da 24 müşteri gelir.
Varyans
l  24 P ( x > 2 ) = ?
Var (x)  l
P( x > 2 ) = 1 – [P(x=0)+P(x=1)+P(x=2)]
 e 24 240 e 24 241 e 24 24 2 
  1  313e 24
1  


1!
2! 
 0!
• Beklenen değeri ve varyansı birbirine eşit
olan tek dağılıştır.
35
ÖDEV: 1 saatte en çok 1 müşteri gelmesinin olasılığını hesaplayınız.
36
9
Üstel Dağılım
SÜREKLİ ŞANS
DEĞİŞKENLERİNİN OLASILIK
YOĞUNLUK FONKSİYONLARI
• Meydana gelen iki olay arasındaki geçen süre
veya bir başka ifadeyle ilgilenilen olayın ilk defa
ortaya çıkması için geçen sürenin dağılışıdır.
Örnek:
• Bir bankada veznede yapılan işlemler arasındaki
geçen süre,
• Bir taksi durağına gelen müşteriler arasındaki
süre,
• Bir hastanenin acil servisine gelen hastaların
arasındaki geçen süre,
• Bir kumaşta iki adet dokuma hatası arasındaki
uzunluk (metre).
• Üstel Dağılım
• Sürekli Üniform Dağılım
• Normal Dağılım
37
• Belirli bir zaman aralığında mağazaya gelen
müşteri sayılarının dağılışı Poisson Dağılımına
uygundur.
• Bu müşterilerin mağazaya varış zamanları
arasındaki
geçen
sürenin
dağılımı
da
Üstel Dağılıma uyacaktır.
• Üstel Dağılımın parametresi b olmak üzere Üstel
ve Poisson Dağılımlarının parametreleri arasında
şu şekilde bir ilişki vardır.
l 
1
b
39
38
Üstel Dağılımın Olasılık
Yoğunluk Fonksiyonu
b : iki durumun gözlenmesi için gereken
ortalama süre yada ölçülebilir uzaklık.
x : iki durum arasında veya ilk durumun ortaya
çıkması gereken süre yada uzaklık.
S={x/0<x<∞}
 1  bx
 e
f x    b
0

,x 0
diger durumlarda
40
10
Üstel Dağılımının
Beklenen Değer ve Varyansı
E x   b
Beklenen Değer
Var x   b 2
Varyans
Saatte ( 60 dakikada ) 24 adet taksi geliyorsa,
b = 10 parametreli bir
populasyondan alınan
n = 1000 hacimlik bir
örnek için oluşturulan
histogram.
200
Frekans
Örnek: Bir taksi durağına bir saatlik zaman dilimi içerisinde gelen
taksilerin geliş sayısı Poisson Dağılışına uygun bir şekilde
gerçekleşmektedir. Durağa saatte ortalama 24 adet taksinin geldiği
bilindiğine göre durağa gelen bir yolcunun en çok 5 dakika
beklemesi olasılığı nedir?
100
1 dakikada 24/60 adet taksi gelir. 1 adet taksi gelmesi için gereken
süre b = 2,5 dk olur. P ( x ≤ 5 ) = ?
HESAPLAMA KOLAYLIĞI!!
x


2,5
 1
f x    2,5 e

0
,x 0
diger durumlarda
1
0
10
20
30
40
50
60
70
80
X
41
Sürekli Üniform Dağılımı
• a ve b gibi iki nokta arasından bir sayı
seçmek
istediğimizde herhangi bir değeri alabilecek x şans değişkeni
uniform dağılışı göstermektedir.
• Sürekli üniform dağılımı ilgilenilen şans değişkeninin
olasılık fonksiyonu hakkında bir bilgiye sahip olunmadığında
ve verilen aralık içerisinde tanımlanan olayın eşit olasılıklarla
ortaya çıkacağı varsayımı yapıldığında kullanışlıdır.
a
1

1
b

x
e b dx  e

a
b
5

1  2, 5 x
1  2, 5 x
e
dx  1  
e
dx  1  e 2,5  1  e 2
2,5
2,5
42
0
5
5
0

P( x  a)  
P( x  5)  
Sürekli Uniform Dağılımının
Olasılık Yoğunluk Fonksiyonu
 1

f x    b  a

0

a  x b
dd
HESAPLAMA KOLAYLIĞI!!
P (c  x  d ) 
d c
ba
Beklenen Değer ve Varyans
E x  
43
ab
2
Var x  
b  a 2
12
44
11
Örnek: Bir demir-çelik fabrikasında üretilen çelik
levhaların kalınlıklarının 150 ile 200 mm arasında
değiştiği ve bunların sürekli uniform şans değişkenine
uygun olduğu bilinmektedir. Levha kalınlıkları 155 mm
altında çıktığı zaman tekrar üretime gönderildiğine göre
bu dağılımın beklenen değerini ve varyansını bulunuz
ve üretim sürecinde tekrar üretime gönderilen levhaların
oranını bulunuz.
b = 10 ve a = 5 parametreli sürekli üniform
dağılımı
gösteren
bir
populasyondan
n = 10000 hacimlik örnek için oluşturulan
histogram.
250
Frekans
200
a) Bu dağılışın ortalama ve varyansı;
E(x)=(150+200)/2 =175 mm
Var(x)=(200-150)2/12 = 208.33 mm2 bulunur.
150
100
50
0
5
6
7
8
9
10
X
45
b) Üretime geri döndürülen ürünlerin oranı ise;
P(150 < x < 155 )= (155-150) / (200-150) = 0,1
Ürünlerin %10’u üretime geri gönderilmektedir.
46
• Sürekli ve kesikli şans değişkenlerinin dağılımları
birlikte ele alındığında istatistikte en önemli dağılım
Normal dağılımdır.
• Normal dağılım ilk olarak 1733’te Moivre tarafından
p başarı olasılığı değişmemek koşulu ile binom
dağılımının limit şekli olarak elde edilmiştir. 1774’te
Laplace hipergeometrik dağılımını limit şekli olarak
elde ettikten sonra 19. yüzyılın ilk yıllarında
Gauss 'un katkılarıyla da normal dağılım istatistikte
yerini almıştır.
NORMAL DAĞILIM
47
48
12
dağılımın
ilk
uygulamaları
doğada
gerçekleşen olaylara karşı başarılı bir biçimde uyum
göstermiştir. Dağılımın göstermiş olduğu bu uygunluk
adının Normal Dağılım olması sonucunu doğurmuştur.
• Normal
• İstatistiksel yorumlamanın temelini oluşturan Normal
Dağılım, bir çok rassal süreçlerin dağılımı olarak
karşımıza çıkmaktadır.
Normal Dağılımın Özellikleri
• Çan eğrisi şeklindedir.
• Simetrik bir dağılıştır.
• Normal Dağılımın parametreleri,
E (x)  m
Var ( x)  s 2
f(x )
• Normal dağılış kullanımının en önemli nedenlerinden
biride bazı varsayımların gerçekleşmesi halinde kesikli
ve sürekli bir çok şans değişkeninin dağılımının
normal dağılışa yaklaşım göstermesidir.
 1

e
f ( x)  s 2

0

50
Parametre Değişikliklerinin
Dağılımın Şekli Üzerindeki Etkisi
Normal Dağılımın Olasılık
Yoğunluk fonksiyonu
1  xm 
 

2 s 
x
Ortalama=Mod=Medyan
49
A
2
,  x  
, diger
f(x )
yerlerde
C
  3,14159...
e = 2,71828
s = populasyon standart sapması
m = populasyon ortalaması
B
x
m A  m B  mC
51
s A2  s B2  s C2
52
13
A
Normal dağılım ortalama
ve
standart
sapma
parametrelerinin
değişimi
sonucu
birbirinden farklı yapılar
gösterir.
Normal Dağılımda Olasılık Hesabı
Olasılık eğri altında
kalan alana eşittir!!!!
f(x )
P(c  x  d )   f ( x)dx  ?
c
ÖNEMLİ!!!
d
x

P(  x  ) 
 f ( x)dx  1

C
B
x
dağılımın için olasılık
yoğunluk fonksiyonunu kullanarak
olasılık
hesaplama
güçlüğü
olasılık değerlerini içeren tablolar
kullanma zorunluluğunu ortaya
çıkarmıştır .
• Her
d
c
f(x )
53
• Birbirinden farklı sonsuz sayıda
normal dağılış olabileceği için
olasılık
hesaplamasında
kullanmak üzere sonsuz sayıda
tablo gereklidir.
Standart Normal Dağılım
54
Standart Normal Şans Değişkeni
• Olasılık hesaplamasındaki zorluktan dolayı normal
dağılış gösteren şans değişkeni standart normal
dönüştürülür.
z
xm
• X ~ N ( m , s2 )
s
• Z ~ N ( 0 , 1)
• Böylece tek bir olasılık tablosu kullanarak normal
dağılış ile ilgili olasılık hesaplamaları yapılmış olur.
f(x )
• Standart normal dağılımda ortalama 0 , varyans
ise 1 değerini alır.
f(z )
s
s1
• Standart normal değişken z ile gösterilir.
55
m
x
m0
z
56
14
Standart Normal Dağılım
Tablosunu Kullanarak
Olasılık Hesaplama
f(z )
P(0  z  1)  ?
0
z
1
P(0  z  1)  0,3413
57
58
SİMETRİKLİK ÖZELLİĞİNDEN DOLAYI 0’DAN
EŞİT UZAKLIKTAKİ Z DEĞERLERİNİN 0 İLE
ARASINDAKİ KALAN ALANLARININ DEĞERLERİ
BİRBİRİNE EŞİTTİR.
f(z )
P( z  1)  ?
P(0  z  a)  P(a  z  0)
0
1
f(z )
z
1  P(0  z  1)  1  0,3413  0,1587
59
-a
0
a
z
60
15
f(z )
f(z )
P(1  z  1)  ?
P(1,56  z  0,95)  ?
-1
0
z
1
-1,56 -0,95
P(1  z  1)  P(1  z  0)  P(0  z  1)
0
P(1,56  z  0,95)  P(1,56  z  0)  P(0,56  z  0)
 2 * P(0  z  1)  2(0,3413)  0,6826
 0,4406  0,3289  0,1117
61
Normal Dağılımın Standart Normal
Dağılım Dönüşümü
P(a  X  b)  ?
X ~ N ( m , s2 ) Z ~ N ( 0 , 1)
62
• Örnek:
Bir işletmede üretilen vidaların çaplarının
uzunluğunun, ortalaması 10 mm ve standart sapması
2 mm olan normal dağılıma uygun olduğu bilinmektedir.
Buna göre rasgele seçilen bir vidanın uzunluğunun
8,9mm ‘den az olmasının olasılığını hesaplayınız.
P( X  8,9)  ?
am xm bm 
P ( a  X  b )  P



s
s 
 s
 P ( z a  z  zb )
f(x )
z
X ~ N ( 10 , 4 )
 x  m 8,9  10 
P( X  8,9)  P

  P( z  0,55)
2 
 s
f(z )
f(z )
P( z  0,55)  0,5  0,2088
 0,2912
a
m
b
x
za 0
zb
z
63
-0,55
0
z
64
16
şans değişkeni n ve p parametreli Binom Dağılımı
göstermek üzere, n deneme sayısının büyük olduğu
ayrıca p başarı olasılığının küçük olduğu durumlarda
( tercihen np ≤ 5 ) , x şans değişkeni ile ilgili olasılık
hesaplamalarında kolaylık sağlaması açısından
Binom Dağılımı yerine Poisson Dağılımı kullanılır.
• Her iki dağılımın beklenen değeri(ortalaması)
birbirine eşitlenir ve buradan λ’nın tahmini elde edilir.
•X
Binom Dağılımının Poisson
Dağılımına Yakınsaması
•Binom Dağılımı
E ( x)  np
•Poisson Dağılımı
E (x)  l
l  np
65
66
• Örnek: Bir sigorta şirketinin müşterilerinin trafik kazası
sonucunu hayatını kaybetme olasılığı 0,003’dür. Sigorta
şirketinin müşterilerinden 1000 kişilik bir örnek alındığında,
a) 4 müşterinin,
b) En az iki müşterinin trafik kazasında hayatını kaybetme
olasılığın hesaplayınız.
•n = 1000 p =0,003
np = 3 ≤ 5
l  np = 1000(0,003)= 3
•a) P ( X = 4 ) = ?
•b) P ( X ≥ 2 ) = ?
P( X  4) 
Binom Dağılımının Normal
Dağılımına Yakınsaması
e 3 34 27 3

e
4!
8
•P ( X ≥ 2 ) = 1 – [ P ( X = 0) + P ( X = 1) ]
 e 3 30 e 3 31 
3
P( X  2)  1  

  1  4e
0
!
1
!


67
68
17
X şans değişkeni n ve p parametreli Binom Dağılımı
göstermek üzere, n deneme sayısının büyük olduğu
ayrıca p başarı olasılığının 0,5 değerine yaklaşması
sonucunda( tercihen np > 5 ) , x şans değişkeni ile ilgili
olasılık hesaplamalarında kolaylık sağlaması açısından
Binom Dağılımı yerine Normal Dağılım kullanılır.
• Normal Dağılımın parametreleri olan m ve s2 tahmin
edilirken Binom Dağılımının beklenen değer ve varyans
formülleri dikkate alınır.
•
•Normal Dağılım
•Binom Dağılımı
E (x)  m
Var ( x)  s 2
E ( x)  np
Var ( x)  np(1  p)
m  np
s 2  np(1  p)
Süreklilik Düzeltmesi
• Binom Dağılımı kesikli, normal dağılım ise sürekli bir dağılım
olduğundan dolayı, binom dağılımını normal dağılıma
yakınsadığı durumlar için olasılık hesaplamalarında süreklilik
düzeltmesi kullanılması zorunluluğu vardır.
• Kesikli bir şans değişkeni gösteren dağılım sürekli bir
dağılıma yakınsadığında tamsayı değerleri sürekli bir eksende
tanımlanır.
P(a  X  b)  Pa  0,5  X  b  0,5
P( X  a)  P X  a  0,5
69
P( X  a)  P X  a  0,5
70
• Örnek: Bir kampüste okuyan öğrencilerin % 20 si sigara
içmektedir. Öğrencilerden 225 kişilik bir örnek alındığında,
a) 40’dan fazla kişinin sigara içme olasılığını,
b) 30 kişinin sigara içme olasılığını hesaplayınız.
•n = 225 p = 0,20
np = 45 > 5
m  np = 225(0,20)= 45 s  np(1  p)  225(0,20)(0,80)  6
•a) P ( X ≥ 40) =? →
P ( X ≥ 39,5) = ?
39,5  45 

P( X  39,5)  P z 
  P( z  0,92)  0,5  0,3212  0,8212
6


Poisson Dağılımının Normal
Dağılımına Yakınsaması
•b) P ( X = 30) =? → P ( 29,5 < X < 30,5) = ?
30,5  45 
 29,5  45
P(29,5  X  30,5)  P
z
  P(2,58  z  2,42)
6
6


 0,4949  0,4922  0,0027
71
72
18
X şans değişkeni λ parametreli Poisson Dağılımı
göstermek üzere, λ parametresinin
büyük olduğu
durumlarda ( tercihen λ ≥ 20 ) , x şans değişkeni ile ilgili
olasılık hesaplamalarında kolaylık sağlaması açısından
Poisson Dağılımı yerine Normal Dağılım kullanılır.
• Normal Dağılımın parametreleri olan m ve s2 tahmin
edilirken Poisson Dağılımının beklenen değer ve
varyans formülleri dikkate alınır.
•
•Poisson Dağılımı
E (x)  l
Var (x)  l
•Normal Dağılım
E (x)  m
Var ( x)  s 2
m l s2 l
73
• Örnek: Bir havaalanından 1 saatlik süre içerisinde ortalama
olarak 49 adet uçak kalkmaktadır.1 saatlik süre içerisinde
a) 60’dan fazla uçak kalkmasının olasılığını,
b) 30 ile 40 adet arasında bir uçak kalkmasının olasılığını
hesaplayınız.
•λ = 49 ≥ 20
m = λ = 49
s  l  49  7
•a) P ( X > 60) = ? → P ( X > 59,5) = ?
59,5  49 

P( X  59,5)  P z 
  P( z  1,5)  0,5  0,4332  0,0668
7


•b) P ( 30 < X < 40) = ? → P (29,5 < X < 40,5) = ?
40,5  49 
 29,5  49
P(29,5  X  40,5)  P
z
  P(2,79  z  1,21)
7
7


 0,4974  0,3869  0,1105
74
19
Download