olasılık

advertisement
OLASILIK
• Populasyon hakkında bilgi sahibi olmak amacı ile
alınan örneklerden elde edilen bilgiler, bire bir doğru
olmayıp hepsi mutlaka bir hata payı taşımaktadır.
• Bu hata payının ortaya çıkmasının sebebi seçilen
örneklerin şansa bağlı olarak farklılıklar göstermesi ve
bunun sonucunda her deneyde farklı sonuçlarla
karşılaşılmasıdır.
• Olasılık, herhangi bir deneyin sonucunda
gözlenebilecek farklı durumlar ile hangi sıklıkla
karşılaşılacağıdır. Bir başka ifadeyle ortaya çıkan
olayların belirsizliğinin incelenmesi anlamına gelir.
1
• Diğer bir tanım, Olasılık bir olayın meydana
gelme şansının sayısal ifadesidir.
• 17 yy.’da şans oyunlarıyla birlikte kullanılmaya
başlanan olasılık, uygulamalı matematiğin bir dalı
olarak gelişim göstermiş ve istatistiksel yorumlamada
önemli uygulama alanı bulmuştur.
Örnekler:
• Madeni paranın atılması sonucu tura gelme
olasılığı,
• Bir deste iskambil kağıdından çekilen 2 kağıdın en
az birinin papaz olma olasılığı,
• Nişanlı olan bir çiftin evlenme olasılığı.???
2
Temel Tanımlar ve Kavramlar• Olay: Birden fazla basit olayın bir araya
gelmesi sonucu oluşur.
Örnek: hilesiz bir zarın atılması sonucu asal
sayı gelmesi,
içinde 5 sarı 7 lacivert bilye bulunan torbadan 2
top çekildiğinde birinin sarı birinin lacivert olması.
3
• Örnek Uzayı: Bir deneyin sonucunda
elde edilen tüm mümkün basit olaylarının
oluşturduğu kümedir. Genellikle S ile
tanımlanır.
• Örnek: Hilesiz bir zarın atılması sonucu
elde edilen örnek uzayı;
• x: zarın üst yüzünde gelen sayı
• S = { x; x = 1,2,3,4,5,6 }
4
Temel Tanımlar ve Kavramlar
• Tekrarlanabilir Deney: Sonucu kesin olarak
kestirilemeyen bir tek çıktı (şans değişkeni) oluşturan
eylem, gözlem ya da süreçtir.
Örnek: madeni para atılması,
içinde 5 sarı 7 lacivert bilye bulunan torbadan bir top
çekilmesi.
• Basit Olay: Tek bir deneyde tek bir sonuç olarak
gerçekleşen olaylardır.
Örnek: hilesiz bir zarın atılması sonucu
2 gelmesi P(A)
bir deste iskambil kağıdından çekilen kağıdın maça5
as olması P(A)
• Bileşik olay:İki veya daha çok olayın birlikte
veya birbiri ardına meydana gelmesine denir.
• P(A1 ve A2)
• İki zar atılır ve 4 gelmesi
• Bir zar arka arkaya iki defa atılır .Her iki atışta da 4
gelmesi.
• 52 lik desteden as ve aynı zamanda karo gelmesi.
6
Temel Tanımlar ve Kavramlar
• Ayrık (bağdaşmaz) olay: Eğer A ve B gibi iki olay
aynı anda gerçekleşemiyor ise bu olaylara
ayrık(birbirini engelleyen) olaylar denir
Örnek:
•Madeni para atılması sonucunda yazı veya tura
gelmesi
•Bir sınavda geçilir veya kalınır.
7
• Bağdaşır olay:Bir olayın ortaya çıkması başka bir
olayın ortaya çıkmasını engellemiyorsa iki veya
daha çok olay birlikte meydana gelebiliyorsa
bağdaşır olaydır.
Örnek:
• Zarın atılması sonucu 1 ve tek sayı gelmesi.
(Çünkü aynı anda gerçekleşebilirler.)
• 52 lik desteden çekilen kartın maça olması kız
olması
8
• Bağımsız olay: Bir olayın ortaya çıkması
başka bir olayın ortaya çıkmasından ilişkisiz ise
P( A  B  P( A).P( B)
Örneğin, ailede birinci çocuğun erkek olması
ikincisinin de erkek olacağı anlamına gelmez.
• Bağımlı olay: Bir olayın ortaya çıkması başka bir
olayın ortaya çıkmasını etkiliyorsa
• 52 lik bir desteden iadesiz arka arkaya iki kart
çekiliyor. Kart sayısı önce 52 sonra 51.
• 6 beyaz, 8 kırmızı top var. 3 top çekiliyor İade
edilirse bağımsız, iade edilmezse bağımlı olaydır.
9
• Eşit Olasılıklı Olaylar: Bir örnek uzayındaki
tüm basit olayların ortaya çıkma olasılığı eşit
ise bu olaylara eşit olasılıklı olaylar denir.
•
Örnek:
• Bir deste iskambil kağıdından bir adet kağıt
çekilmesi.
10
Olasılığın İki Temel Kuralı;
1) Tüm basit olayların olasılıkları 0 ile 1
arasındadır.
2) Bir örnek uzayındaki tüm basit olayların
ortaya çıkma olasılıklarının toplamı 1’e eşittir.
DİKKAT!!!!
Hiç bir olayın OLASILIĞI 1’den büyük
olamaz!!!!
• Bir A olayın ortaya çıkma olasılığı;
P(A)
şeklinde gösterilir.
11
Olasılığın Gelişim Aşamaları
• Klasik (A Priori) Olasılık
• Frekans (A Posteriori) Olasılığı
• Aksiyom Olasılığı
NOT:Bu sıralama olasılık teorisinin tarihsel
gelişimini tanımlamaktadır.
12
Klasik Olasılık
• Eğer bir örnek uzayı n(S) adet ayrık ve eşit
olasılıkla ortaya çıkan basit olaylardan oluşuyor
ve örnek uzayındaki basit olaylardan n(A) adedi A
olayının özelliğine sahip ise A’nın olasılığı:
P(A) = n(A) / n(S) kesri ile elde edilir
n(S): Örnek uzayı eleman sayısı
n(A): Örnek uzayındaki A elemanı sayısı
• Klasik olasılık TÜMDENGELİME dayanan çıkarımlar
yaparak olasılığı bulur.
13
Örnek: Bir kapta 5 sarı, 5 lacivert ve 5 adet
yeşil bilye bulunmaktadır. Çekilen bir bilyenin
sarı olma olasılığı nedir?
A: Çekilen bir bilyenin sarı olması
n(S): Örnek uzayı eleman sayısı = 15
n(A): Örnek uzayındaki A elemanı sayısı = 5
n( A) 5 1
P( A) 
 
n( S ) 15 3
14
Frekans Olasılığı
• Araştırılan anakütle üzerinde n adet deney
uygulanır. Yapılan bu deneylerde ilgilenilen A
olayı n(A) defa gözlenmiş ise A olayının göreli
frekansı (yaklaşık olasılığı):
P(A) = n(A) / n olarak bulunur.
15
Örnek:
Bir fabrikanın üretmiş olduğu televizyonların hatalı
olma olasılığı p nedir?
Önce örnek uzayı oluşturulur:
S={sağlam,hatalı}
Klasik olasılığa göre (eşit olasılıklı olaylar)
p=0.5 olup gerçeği yansıttığı şüphelidir.
Yapılması gereken; örneklem alarak
p = n(H) / n
olasılığını hesaplamaktır.
16
• Bazı Temel Olasılık Aksiyomları
• Bir olayın olasılığı 0 ile 1 arasındadır. Örneğin bir para
atıldığında yazı gelme olasılığı 0.5 dir.
• Bir örnek uzayındaki tüm sonuçların olasılıklarının toplamı 1 e
eşittir.
Örnek: İki para atılma olayında örnek uzayı:
s  (YY ),(TT ),(TY ),(YT )
Her sonucun gelme olasılığı ¼ dür. 4 sonuç olduğuna göre
¼+1/4+1/4+1/4=1.
• P(S)=1 örnek uzağının olasığı 1 dir.
• P (  ) = 0 boş kümenin olasılığı sıfırdır.
• A olayının tümleyeni A olarak gösterilir.
P( A )  1  P(A)
17
Örnek Uzayı ve Olay Sayısını Belirleyen Sayma
Yöntemleri
• Klasik olasılığın diğer bir ifade ile eşit olasılıklı
olayların geçerli olduğu durumlarda:
– Örnek uzayının eleman sayısı,
– İlgilenilen olayın eleman sayısının belirlenmesi
gereklidir.
Kullanılan iki temel prensip;
1) Toplama Yöntemi
2) Çarpma Yöntemi
18
• Bağımlı olayda çarpma kuralı:
Bağımlı iki olaydan A2 olayı A1 olayından sonra ortaya
çıktığında olayların birlikte gerçekleşme olasılığıdır.
P( AveA
1
2 )  P( A1 ).P( A2 A1 )
A2 nin şartlı olasılığı
• 8 boş 2 ikramiyeli bilet var. Bir kişi 2 bilet almış her iki
biletinde ikramiye kazanma olasılığı nedir?
• 1.bilet: P(A1)=2/10
Geriye 8 boş ve 1 ikramiyeli bilet kaldı.
1
P ( A2 A1 ) 
9
2 1 1
P( A1veA2 )  P ( A1 ).P ( A2 A1 )  . 
10 9 45
19
• Bağımsız olayda çarpma kuralı:
Birbirinden bağımsız A1 ve A2 olaylarının birlikte gerçekleşmesi
olasılığı bu olayların basit olasılıklarının çarpımına eşittir.
P( AveA
1
2 )  P( A1 ).P( A2 )
• Aynı anda atılan iki zarın ikisinin de 2 gelmesi
1 1 1
P( A1veA2 )  P( A1 ).P( A2 )  . 
6 6 36
Alinin 25 yıl sonra hayatta olması olasılığının 0.60, kardeşli
Hasan’ın 25 yıl sonra hayatta olması olması olasılığının
0.50 olduğunu varsayarsak 25 yıl sonra ikisinin de hayatta
olma olasılığı nedir.
P( AveA
1
2 )  P( A1 ).P( A2 )  0.60.(0.50)  0.30
20
• Bağdaşır olayda toplama kuralı:
• İki olay bağdaşır olduğunda A1 olayının veya A2 olayının
ortaya çıkması, ya A1 olayının ya A2 olayının ya da A1 ve A2
olaylarının her ikisinin birlikte gerçekleşmesi anlamına gelir.
P( AveyaA
1
2 )  P( A1 )  P( A2 )  P( AveA
1
2)
P(A1 U A2 )  P(A1 )  P(A2 )-P(A1  A2 )
• 52 lik bir desteden bir kız veya bir maça kızı
çekme olasılığı nedir?
P(A1 U A2 )  P(A1 )  P(A2 )-P(A1  A2 )
4 13 1
P( A1veyaA2 )  P( A1 )  P( A2 )  P( A1veA2 )   
52 52 52
21
• Bağdaşmaz olaylarda toplama kuralı:
• A1 ve A2 bağdaşmaz olaylar ise A1 veya A2
olayının ortaya çıkması olasılığı
P( AveyaA
1
2 )  P( A1 )  P( A2 )
• Bir zarın 2 veya 6 gelmesi olasılığı nedir?
1 1 2 1
P( A1veyaA2 )  P( A1 )  P( A2 )    
6 6 6 3
22
Şartlı Olasılık
• Bağımlı olaylardan birinin (A1) gerçekleştiği bilindiğine
göre , diğerine (A2) bağlı meydana gelme olasılığıdır.
P( A2 A1 )
• A2 nin A1 e bağlı şartlı olasılığı.
P( A2 A1 )  P( A1veA2 ) / P( A1 )
 P( A1  A2) / P( A1 )
• A1 in gerçekleşmiş
gerçekleşme olasılığıdır.
olması
şartıyla
A2nin
23
• Bir öğrencinin iktisat dersinde başarılı olma
olasılığı P(A1)=0.25 olsun. Aynı öğrencinin hem
iktisat hem Matematikte başarılı olma olasılığı
P(A1 ve A2)=0.15. Öğrencinin İktisatta başarılı
olması şartıyla Matematikte de başarılı olma
olasılığı nedir?
P( A2 A1 )  P( A1veA2 ) / P( A1 )
 P( A1  A2) / P( A1 )
P( A2 A1 )  0.15 / 0.25
24
Örnek: Bir üniversitede okuyan öğrencilerin % 70’i tiyatroya,
% 35 ise sinemaya ilgi duymaktadır.
a) Bir öğrencinin sinemaya ilgi duyduğu bilindiğinde tiyatroya ilgi
duyma olasılığı 0,40 ise her iki aktiviteye birden ilgi duyma
olasılığı nedir?
b) Bir öğrencinin tiyatro veya sinemaya ilgi duyma olasılığı nedir?
T:Tiyatroya ilgi duyma
S:Sinemaya ilgi duyma
P ( T ) = 0,70
P( S ) = 0,35
a) P ( T / S ) = 0,40
P (T ∩ S ) =?
P(T  S)  P(T/S) * P(S)  0,40 * 0,35  0,14
P(T U S)  P(T)  P(S) - P(T  S)
b)
 0,70  0,35 - 0,14  0,91
25
Bayes Teoremi
•Çeşitli
aynı
nedenlerin
verebildiği
sonucu
durumlarda, bazen sonuç bilindiği halde bunun hangi
nedenden meydana geldiği bilinmeyebilir.
•Sonucun hangi olasılıkla, hangi nedenden ortaya
çıktığı
araştırılmak
istendiğinde
Bayes
teoreminden yararlanılır. Yani sonuç belli iken
geriye doğru analiz yapma imkanı sağlar.
P( A  B )
P( A / B ) P( B )
P( B / A) 

P( A)
 P( A / B ) P( B )
i
i
i
i
k
i 1
i
26
i
Örnek: Bir ilaç üç fabrika tarafından üretilmektedir.
1. Fabrikanın üretimi 2. ve 3. fabrikaların üretiminin 2 katıdır.
Ayrıca 1. ve 2. fabrikalar % 2, 3. fabrika % 4 oranında
bozuk ilaç üretmektedir. Üretilen tüm ilaçlar aynı depoda
saklandığına göre bu depodan rast gele seçilen bir ilacın
bozuk olma olasılığı nedir.
A = Seçilen ilacın bozuk olma olasılığı
P(A)=?
Bi= Seçilen ilacın i nci fabrikada üretilmesi
P(B1) = P(B2) + P(B3)
P(B1) + P(B2) + P(B3) = 1 olduğundan;
P(B1) = 0,50
P(B2) = P(B3) = 0,25 olarak elde edilir.
27
Depodan rasgele seçilen bir ilacın bozuk olduğu
bilindiğine göre 1 nci fabrikadan gelmiş olma
olasılığı;
P(A/B1 )P(B1 )
P(B1/A) 
P(A/B1 )P(B1 )  P(A/B 2 )P(B 2 )  P(A/B 3 )P(B 3 )
(0.02)(0.5 )
P(B1/A) 
 0,40
(0.02)(0.5 )  (0.02)(0.2 5)  (0.04)(0.2 5)
A = Seçilen ilacın bozuk olma olasılığı
P(A)=
Bi= Seçilen ilacın i nci fabrikada üretilmesi P ( B1 ) ; P ( B2); P ( B3)
P(B1) + P(B2) + P(B3) = 1 olduğundan;
28
P(B1) = 0,50
P(B2) = P(B3) = 0,25
Örnek:
3 mavi, 2 kırmızı ve 5 yeşil
torba bulunmaktadır.
Mavi torbaların her birinde 15 bilya(7si beyaz ve 8 i
siyah), kırmızı torbaların her birinde 11 bilya(7si
beyaz ve 4 ü siyah) yeşil torbaların herbirinde 20
bilya(11
i
beyaz
ve
9
u
siyah)
bulunduğu
bilinmektedir. Bu torbaların birinden bir bilya çekilmiş
ve siyah renkte olduğu görülmüştür. Bu bilyanın mavi
renkte bir torbadan çekilmesi olasılığı nedir.
29
•S:siyah bilya çekilmesi olayını
•P(M):bir bilyanın mavi torbadan çekilmesi olasılığı =3/10
•P(K): bir bilyanın kırmızı torbadan çekilmesi olasılığı=2/10
•P(Y) : bir bilyanın yeşil torbadan çekilmesi olasılığı=5/10
P( S M ) :
•Mavi torbadan çekilen bir bilyanın siyah
renkli olması olasılığı=8/15
P(S K ) :
•Kırmızı torbadan çekilen bir bilyanın
siyah renkli olması olasılığı=4/11
P(S Y ) :
•Yeşil torbadan çekilen bir bilyanın siyah
renkli olması olasılığı=9/20
P( M S ) :
•Siyah renkli bir bilyanın mavi torbadan
30
çekilmiş olması olasılığı nedir?
P( M ).P( S M )
P( M S ) 
P( M ).P( S M )  P( K ).P( S K )  P(Y ).P( S Y )
(3 /10).(8 /15)
P( M S ) 
(3 /10).(8 /15)  (2 /10).(4 /11)  (5 /10).(9 / 20)
P(M S )  0.3496
Çekilen siyah bilyanın mavi renkli bir torbadan
çekilmiş olması olayı %34.96dır.
31
Download