JEODEZİK ÖLÇMELER DERSİ Yrd. Doç. Dr. Hakan AKÇIN Yrd. Doç. Dr. Hüseyin KEMALDERE REFERANS (KOORDİNAT) SİSTEMLERİ VE DATUM 1. Hafta Ders Notları REFERANS (KOORDİNAT) SİSTEMLERİ VE DATUM Referans (Koordinat) sistemlerini Olarak en genel şekilde ele alabiliriz. Yersel Koordinat sistemleri ise 1. YERSEL KOORDİNAT SİSTEMLERİ 1.2.a Doğal Koordinat Sistemleri Doğa içinde fiziksel olarak var olan ve uzayda dünya ile birlikte zamana bağlı olarak hareket eden koordinat sistemleridir. Doğal Koordinat Sistemlerini, sistemin ağırlık merkezinin bulunduğu yer ve sistemin tanımlanmasında kullanılan parametrelere göre; doğal dik koordinat sistemi, doğal eğri koordinat sistemi ve doğal yerel koordinat sistemi olarak bölümlemek olasıdır. Doğal koordinat sisteminde; Yeryuvarı üzerinde konum belirlemek için yermerkezli ve yer-sabit bir konvansiyonel yersel referans sistemine (CTRS) yada (ECEF)’e ihtiyaç duyulur. Böyle bir sistemin orijini yeryuvarının ağırlık merkezinde birincil kutbu, yerin dönme yerkabuğunun kesişim noktasında bulunur. ekseniyle Kutup Hareketi Ancak, yerin dönme ekseni ve maximum çekim kuvvetinin çakışmaması nedeniyle, yukarıda tanımlanan birincil kutup noktası zamana bağlı bir hareket yapar; bu hareket kutup hareketi olarak adlandırılır. Kutup hareketinden kaynaklanan koordinat değişimlerini gidermek için, bir konvansiyonel yersel kutup (CTP) tanımlamasına ihtiyaç vardır. Bu kutup 1900-1905 yılları arasında kutup hareketinin şekil merkezi olarak belirlenmiştir. Yeryuvarının anlık dönme ekseni, kutup hareketi parametreleri (xp, yp (derece saniyesi biriminde)) kullanılarak CTP’a referanslanabilir. Kutup hareketi 1.1.a Jeosentrik (Yer merkezli) Sistemler • Ortalama ve Anlık Yersel Sistemler • Jeodezik (Elipsoidal) sistemler 1.1.a.a Ortalama (Konvansiyonel) ve Anlık Yersel Sistemler Temel yersel koordinat sistemi, Konvansiyonel Yersel Koordinat Sistemi veya diğer adıyla Ortalama Dünya Dik Koordinat Sistemi’dir. Ortalama Sistem bir ideal sistemdir. 1.1.a.a Ortalama (Konvansiyonel) ve Anlık Yersel Sistemler Yerin katı yapısına göre yerin dönme ekseninin değiştiği (Kutup hareketi) bilinmektedir. Bu nedenle CTP kutbu bir tanımdır. Her bir T anı için yerin gerçek kutbu değişmektedir. Gerçek kutup ile tanımlanan kutup arasındaki bağıntının sağlanması gerekir. Yer üzerinde yapılan gözlemeler (örneğin astronomik gözlemeler, uydu ölçmeleri) yeryuvarının gözlem anındaki gerçek dönme eksenine göredir. Dönme ekseninin konumu katı yeryuvarına göre zamanla değiştiğinden her gözlem anında bir dönme ekseni ve bu eksene ve yerin ağırlık merkezine göre bir koordinat sistemi oluşur. Bu sistemlerin her biri “Anlık Yersel Koordinat Sistemi” olarak adlandırılır. Anlık ve Konvansiyonel sistem arasında dönüşüm X X Y Y R (-X ) R ( -Y ) 2 P 1 P Z CTRS Z Anl. TRS 1 0 R1 ( ) 0 cos 0 sin 0 sin cos cos R 2 ( ) 0 sin 0 sin 1 0 0 cos 1.1.a.b Jeodezik (Elipsoidal) Sistemler Yerkabuğu Sabit bir CTRS Jeodezik uzay teknolojilerinde 1980’li yıllardan sonra yaşanan gelişmeler, kutup hareketi parametrelerine ek olarak plaka tektoniğini de dikkate alan “yerkabuğu sabit” bir CTRS tanımını zorunlu kılmıştır. Çünkü, plaka hareketleri sabit istasyon koordinatlarının zamanla birbirleriyle olan tutarlılığını yitirmesine neden olur. Bu tutarsızlık, kutup hareketinde olduğu gibi parametreler yardımıyla giderilemeyecek kadar komplekstir. Çözüm, belirli bir epokta global bir noktalar ağının tüm gelgit etkilerinden arındırılmış tutarlı bir koordinat seti ve onların hızları yardımıyla bir “referans çerçeve (frame)” tanımlamaktır. ITRS ve ITRF International Terrestrial Reference Frame (ITRF), yerkabuğu sabit bir CTRS olan International Terrestrial Reference System (ITRS)’i temsil eden böyle bir referans ağıdır. ITRF Çözümleri ITRF’in oluşturulması, sürdürülmesi ve geliştirilmesi International Earth Rotation Service (IERS)’in sorumluluğundadır. Yeryüzündeki deformasyon hareketlerinin çok kompleks olması ve veri değerlendirme tekniklerinde yaşanan gelişmeler nedeniyle, IERS güncelleştirilmiş ITRF çözümleri yayınlamaktadır. Bu çözümler, ITRF kısaltmasına çözüm yılını ekleyerek isimlendirilirler; örneğin ITRF94, ITRF96 ve ITRF00. En güncel çözüm ITRF08’ dir. ITRF Noktaları Referans Elipsoidi Nokta konumlarının Coğrafi (curvilinear) koordinatlarla ifade edilebilmesi ve bir takım jeodezik hesaplamaların yapılabilmesi için CTRS ile ilişkili bir referans elipsoidine ihtiyaç duyulur. x= (N+h)coscos y= (N+h)cossin z=((1-e2)N+h)sin N: meridyene dik doğrultudaki normal kesit eğirilik yarıçapı N= c/V = c/(1+e’2cos2 )1/2 c = a2/b y arctan x z e 2 b sin 3 a z 2 2 tan tan p x y p e 2 a cos 3 b p p h N cos indirgenmiş enlem, a ve b sırasıyla elipsoidin büyük ve küçük yarı eksen uzunlukları, e2 ve e’2 sırasıyla birinci ve ikinci eksentrisite değerleridir. GRS80 Elipsoidi Uluslar arası Jeodezi ve Jeofizik Birliği (IUGG) tarafından 1979 yılındaki toplantısında CTRS ile ilişkili referans elipsoidi olarak GRS80 (Geodetic Reference System 1980) elipsoidi benimsenmiştir. GRS80 Elipsoit Parametreleri Parametre GM (m3s-2) (s-1) a (m( e2 f U0 (m2s-2) e (gal) Hayford, Cassini Elipsoidi GRS 1967 Elipsoidi GRS 80 Elipsoidi 398633x109 398633x109 398600.5x109 7.292115x10-5 7.292115x10-5 7.292115x10-5 6378388 6378160 6378137 6.72267x10-3 6.694604x10-3 6.694380x10-3 3.367x10-3 3.352932x10-3 3.352281x10-3 62639790 62636860.85 62636860.85 978.049 978.031846 978.0327 Jeodezik Datum Referans elipsoidleri geçmişte, ölçme teknolojilerinin kısıtlamaları ve uluslar arası işbirliği eksikliği nedenleriyle, yeryuvarının tamamı yerine lokal özellikler dikkate alınarak belirlenmiş ve yeryuvarına yerleştirilmişlerdir. Bir referans elipsoidinin CTRS’ye göre uygun bir şekilde konumlandırılması ve yönlendirilmesi bir “jeodezik datum” ya da diğer bir deyişle “yatay jeodezik datum” meydana getirir. CTRS’ye göre referans elipsoidinin orijinin ötelenmesi ve eksenlerinin dönüklükleri “datum konum parametreleri olarak” adlandırılır. Diğer bir deyişle, Jeodezik Datum terimi, alışılageldiği şekliyle ,,h ile veya x,y,z dik koordinatlarıyla ifade edilen Elipsoidal Sistemin, Ortalama Dünya Dik Koordinat Sistemine ve böylece yeryuvarına (geoide) göre konumlandırılması ve yönlendirilmesini ifade eder (Torge, 1991). Harita üretiminde ‘’DATUM‘’ deyimi BAŞLANGIÇ anlamına gelmektedir. Uygulamada yatay koordinatlar (sağa, yukarı; enlem, boylam) ve yükseklikler için farklı datumlar kullanılmaktadır. Yeryüzündeki noktalar, harita için seçilen koordinat sisteminde olmak üzere enlem, boylam veya UTM (Universal Transvers Merkator) projeksiyonunda sağa değer, yukarı değeri ile tanımlanır. Ülkeler haritalarını üretmek amacıyla genellikle kendi koşullarına uygun bir yatay datum oluşturur. Her haritanın alt bölümünde yatay ve düşey datumlar ile ilgili açıklama bulunur. Paftalara ilişkin DATUM bilgileri, her paftanın alt bölümünde verilmektedir. Yatay Datum tanımının geometrik ve fiziksel anlamı ; -Fiziksel yeryüzüne en yakın geometrik şeklin bir elipsoid (Hesap yüzeyi.Matematik model), -Elipsoidin kitlesinin yerin kitlesine eşit (Fiziksel model), -Dönme ekseninin yer dönme ekseni ile çakışık (Geometrik koşul) -Ağırlık merkezinin yerin ağırlık merkezi ile çakışık (Geometrik koşul) olması model ve koşullar ile anlaşılabilir. Elipsoid için varsayılan tüm koşullar gerçekleştirilebiliyorsa, tanımlanan Elipsoidi, eksenleri dönme bu için elipsoide, sadece Mutlak paralellik Yer koşulu gerçekleştirilebiliyorsa seçilen elipsoide Rölatif Yer Elipsoidi denir. Bu açıdan, ülkemizde ED50 sisteminde kullanılan ve 1924 yılında Hayford tarafından tanımlanan elipsoit rölatif bir elipsoit, ITRF sistemi tarafından kullanılan GRS80 elipsoidi ise mutlak bir elipsoittir Jeodezik Datum Örnekleri Referans elipsoidi Datum Ülke Clarke NAD27 USA Hayford ED50 Avrupa, Türkiye Krasowsky Pulkova42 Eski Doğu Bloğu Ülkeleri Jeodezik nokta konumlama, navigasyon ve jeodinamik amaçlarla kullanıma uygun, Halen kullanımda olan ED-50 datumundaki ulusal temel yatay kontrol ağı ile arasındaki dönüşümü sağlanan, GPS teknolojisine dayalı olması öngörülerek, bu özellikleri sağlayan jeodezik temel ağın kurulması ile ilgili ölçme ve değerlendirme çalışmaları fiilen 1997-1999 yıllarında tamamlanarak TUTGA-99 oluşturulmuştur. TUTGA-99 yapı olarak; ITRF-96 ve 1998.0 epoklu koordinatları bilinen GPS noktaları ağıdır. TUTGA Düşey Datum Jeoit-elipsoit ayrımı dünyanın farklı bölgelerinde 100 m ye kadar ulaşabilmektedir. Bu nedenle elipsoit referanslı yükseklikler çoğu mühendislik uygulamaları için uygun değildir. Yükseklikler için uygun referans yüzeyi (datum) geoittir. Harita üzerinde görülen münhaniler, ortalama deniz seviyesinden itibaren ölçülen yükseklikleri tanımlamaktadır. Ülkemiz haritalarında kullanılan düşey datum; ANTALYA’da 1936 yılında kurulmuş olan deniz seviyesi ölçme (mareograf) istasyonunda 1936-1970 yılları arasında yapılan ölçülerin ortalaması ile belirlenmiştir.